bhadresh-savani commited on
Commit
698432b
·
1 Parent(s): 558653a

updated app

Browse files
Files changed (1) hide show
  1. app.py +8 -26
app.py CHANGED
@@ -2,7 +2,12 @@ import streamlit as st
2
  from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
3
 
4
  @st.cache(persist=True)
5
- def load_model(input_complex_sentence,model, tokenizer):
 
 
 
 
 
6
 
7
  tokenized_sentence = tokenizer(input_complex_sentence,return_tensors="pt")
8
  result = model.generate(tokenized_sentence['input_ids'],attention_mask = tokenized_sentence['attention_mask'],max_length=256,num_beams=5)
@@ -12,22 +17,6 @@ def load_model(input_complex_sentence,model, tokenizer):
12
 
13
  def main():
14
 
15
- t5_base_path = "flax-community/t5-base-wikisplit"
16
- t5_base_tokenizer = AutoTokenizer.from_pretrained(t5_base_path)
17
- t5_base_model = AutoModelForSeq2SeqLM.from_pretrained(t5_base_path)
18
-
19
- t5_v1_1_base_path = "flax-community/t5-v1_1-base-wikisplit"
20
- t5_v1_1_base_tokenizer = AutoTokenizer.from_pretrained(t5_v1_1_base_path)
21
- t5_v1_1_base_model = AutoModelForSeq2SeqLM.from_pretrained(t5_v1_1_base_path)
22
-
23
- byt5_base_path = "flax-community/byt5-base-wikisplit"
24
- byt5_base_tokenizer = AutoTokenizer.from_pretrained(byt5_base_path)
25
- byt5_base_model = AutoModelForSeq2SeqLM.from_pretrained(byt5_base_path)
26
-
27
- t5_large_path = "flax-community/t5-large-wikisplit"
28
- t5_large_tokenizer = AutoTokenizer.from_pretrained(t5_large_path)
29
- t5_large_model = AutoModelForSeq2SeqLM.from_pretrained(t5_large_path)
30
-
31
  st.title("✂️ Sentence Split in English using T5 variants")
32
  st.write("Sentence Split is the task of dividing a long Sentence into multiple Sentences")
33
 
@@ -40,15 +29,8 @@ def main():
40
  input_complex_sentence = st.text_area("Please type a long Sentence to split",example)
41
 
42
  if st.button('Simplify'):
43
-
44
- if model=="t5-base-wikisplit":
45
- generated_sentence = load_model(input_complex_sentence, t5_base_model, t5_base_tokenizer)
46
- elif model=="t5-v1_1-base-wikisplit":
47
- generated_sentence = load_model(input_complex_sentence, t5_v1_1_base_model, t5_v1_1_base_tokenizer)
48
- elif model=="byt5-base-wikisplit":
49
- generated_sentence = load_model(input_complex_sentence, byt5_base_model, byt5_base_tokenizer)
50
- else:
51
- generated_sentence = load_model(input_complex_sentence, t5_large_model, t5_large_tokenizer)
52
  st.write(generated_sentence)
53
 
54
 
 
2
  from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
3
 
4
  @st.cache(persist=True)
5
+ def load_model(input_complex_sentence,model):
6
+
7
+ base_path = "flax-community/"
8
+ model_path = base_path + model
9
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
10
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
11
 
12
  tokenized_sentence = tokenizer(input_complex_sentence,return_tensors="pt")
13
  result = model.generate(tokenized_sentence['input_ids'],attention_mask = tokenized_sentence['attention_mask'],max_length=256,num_beams=5)
 
17
 
18
  def main():
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  st.title("✂️ Sentence Split in English using T5 variants")
21
  st.write("Sentence Split is the task of dividing a long Sentence into multiple Sentences")
22
 
 
29
  input_complex_sentence = st.text_area("Please type a long Sentence to split",example)
30
 
31
  if st.button('Simplify'):
32
+
33
+ generated_sentence = load_model(input_complex_sentence, model)
 
 
 
 
 
 
 
34
  st.write(generated_sentence)
35
 
36