Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
704ee93
1
Parent(s):
1b9d7ec
Update demo to use Suraj's backend server.
Browse filesFormer-commit-id: 6a2df0b8bb5ea2d2e88a376e02d0d5f4b1f033db
- README.md +1 -1
- app/app_gradio_ngrok.py +105 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🎨
|
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
app_file: app/
|
8 |
pinned: false
|
9 |
---
|
10 |
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
app_file: app/app_gradio_ngrok.py
|
8 |
pinned: false
|
9 |
---
|
10 |
|
app/app_gradio_ngrok.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from io import BytesIO
|
9 |
+
import base64
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
|
14 |
+
def compose_predictions(images, caption=None):
|
15 |
+
increased_h = 0 if caption is None else 48
|
16 |
+
w, h = images[0].size[0], images[0].size[1]
|
17 |
+
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
18 |
+
for i, img_ in enumerate(images):
|
19 |
+
img.paste(img_, (i*w, increased_h))
|
20 |
+
|
21 |
+
if caption is not None:
|
22 |
+
draw = ImageDraw.Draw(img)
|
23 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
24 |
+
draw.text((20, 3), caption, (255,255,255), font=font)
|
25 |
+
return img
|
26 |
+
|
27 |
+
def top_k_predictions(prompt, num_candidates=32, k=8):
|
28 |
+
images = hallucinate(prompt, num_images=num_candidates)
|
29 |
+
images = clip_top_k(prompt, images, k=k)
|
30 |
+
return images
|
31 |
+
|
32 |
+
class ServiceError(Exception):
|
33 |
+
def __init__(self, status_code):
|
34 |
+
self.status_code = status_code
|
35 |
+
|
36 |
+
def get_images_from_ngrok(prompt):
|
37 |
+
r = requests.post(
|
38 |
+
"https://dd7123a7e01c.ngrok.io/generate",
|
39 |
+
json={"prompt": prompt}
|
40 |
+
)
|
41 |
+
if r.status_code == 200:
|
42 |
+
images = r.json()["images"]
|
43 |
+
images = [Image.open(BytesIO(base64.b64decode(img))) for img in images]
|
44 |
+
return images
|
45 |
+
else:
|
46 |
+
raise ServiceError(r.status_code)
|
47 |
+
|
48 |
+
def run_inference(prompt):
|
49 |
+
try:
|
50 |
+
images = get_images_from_ngrok(prompt)
|
51 |
+
predictions = compose_predictions(images)
|
52 |
+
output_title = f"""
|
53 |
+
<p style="font-size:22px; font-style:bold">Best predictions</p>
|
54 |
+
<p>We asked our model to generate 32 candidates for your prompt:</p>
|
55 |
+
|
56 |
+
<pre>
|
57 |
+
|
58 |
+
<b>{prompt}</b>
|
59 |
+
</pre>
|
60 |
+
<p>We then used a pre-trained <a href="https://huggingface.co/openai/clip-vit-base-patch32">CLIP model</a> to score them according to the
|
61 |
+
similarity of the text and the image representations.</p>
|
62 |
+
|
63 |
+
<p>This is the result:</p>
|
64 |
+
"""
|
65 |
+
|
66 |
+
output_description = """
|
67 |
+
<p>Read more about the process <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA">in our report</a>.<p>
|
68 |
+
<p style='text-align: center'>Created with <a href="https://github.com/borisdayma/dalle-mini">DALLE·mini</a></p>
|
69 |
+
"""
|
70 |
+
|
71 |
+
except ServiceError:
|
72 |
+
output_title = f"""
|
73 |
+
Sorry, there was an error retrieving the images. Please, try again later or <a href="mailto:[email protected]">contact us here</a>.
|
74 |
+
"""
|
75 |
+
predictions = None
|
76 |
+
output_description = ""
|
77 |
+
|
78 |
+
return (output_title, predictions, output_description)
|
79 |
+
|
80 |
+
outputs = [
|
81 |
+
gr.outputs.HTML(label=""), # To be used as title
|
82 |
+
gr.outputs.Image(label=''),
|
83 |
+
gr.outputs.HTML(label=""), # Additional text that appears in the screenshot
|
84 |
+
]
|
85 |
+
|
86 |
+
description = """
|
87 |
+
Welcome to our demo of DALL·E-mini. This project was created on TPU v3-8s during the 🤗 Flax / JAX Community Week.
|
88 |
+
It reproduces the essential characteristics of OpenAI's DALL·E, at a fraction of the size.
|
89 |
+
|
90 |
+
Please, write what you would like the model to generate, or select one of the examples below.
|
91 |
+
"""
|
92 |
+
gr.Interface(run_inference,
|
93 |
+
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
|
94 |
+
outputs=outputs,
|
95 |
+
title='DALL·E mini',
|
96 |
+
description=description,
|
97 |
+
article="<p style='text-align: center'> DALLE·mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
|
98 |
+
layout='vertical',
|
99 |
+
theme='huggingface',
|
100 |
+
examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']],
|
101 |
+
allow_flagging=False,
|
102 |
+
live=False,
|
103 |
+
server_name="0.0.0.0", # Bind to all interfaces (I think)
|
104 |
+
# server_port=8999
|
105 |
+
).launch(share=True)
|