Spaces:
Running
Running
Merge pull request #40 from borisdayma/app-ui
Browse filesUpdate demo to use Suraj's backend server
Former-commit-id: 176cdf8e7b05f983e22cc16ac884ff55b00e7ab7
- README.md +1 -1
- app/app_gradio_ngrok.py +99 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🎨
|
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
app_file: app/
|
8 |
pinned: false
|
9 |
---
|
10 |
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
app_file: app/app_gradio_ngrok.py
|
8 |
pinned: false
|
9 |
---
|
10 |
|
app/app_gradio_ngrok.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from io import BytesIO
|
9 |
+
import base64
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# If we use streamlit, this would be exported as a streamlit secret
|
14 |
+
import os
|
15 |
+
backend_url = os.environ["BACKEND_SERVER"]
|
16 |
+
|
17 |
+
def compose_predictions(images, caption=None):
|
18 |
+
increased_h = 0 if caption is None else 48
|
19 |
+
w, h = images[0].size[0], images[0].size[1]
|
20 |
+
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
21 |
+
for i, img_ in enumerate(images):
|
22 |
+
img.paste(img_, (i*w, increased_h))
|
23 |
+
|
24 |
+
if caption is not None:
|
25 |
+
draw = ImageDraw.Draw(img)
|
26 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
27 |
+
draw.text((20, 3), caption, (255,255,255), font=font)
|
28 |
+
return img
|
29 |
+
|
30 |
+
class ServiceError(Exception):
|
31 |
+
def __init__(self, status_code):
|
32 |
+
self.status_code = status_code
|
33 |
+
|
34 |
+
def get_images_from_ngrok(prompt):
|
35 |
+
r = requests.post(
|
36 |
+
backend_url,
|
37 |
+
json={"prompt": prompt}
|
38 |
+
)
|
39 |
+
if r.status_code == 200:
|
40 |
+
images = r.json()["images"]
|
41 |
+
images = [Image.open(BytesIO(base64.b64decode(img))) for img in images]
|
42 |
+
return images
|
43 |
+
else:
|
44 |
+
raise ServiceError(r.status_code)
|
45 |
+
|
46 |
+
def run_inference(prompt):
|
47 |
+
try:
|
48 |
+
images = get_images_from_ngrok(prompt)
|
49 |
+
predictions = compose_predictions(images)
|
50 |
+
output_title = f"""
|
51 |
+
<p style="font-size:22px; font-style:bold">Best predictions</p>
|
52 |
+
<p>We asked our model to generate 128 candidates for your prompt:</p>
|
53 |
+
|
54 |
+
<pre>
|
55 |
+
|
56 |
+
<b>{prompt}</b>
|
57 |
+
</pre>
|
58 |
+
<p>We then used a pre-trained <a href="https://huggingface.co/openai/clip-vit-base-patch32">CLIP model</a> to score them according to the
|
59 |
+
similarity of the text and the image representations.</p>
|
60 |
+
|
61 |
+
<p>This is the result:</p>
|
62 |
+
"""
|
63 |
+
|
64 |
+
output_description = """
|
65 |
+
<p>Read our <a style="color:blue;" href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA">full report</a> for more details on how this works.<p>
|
66 |
+
<p style='text-align: center'>Created with <a style="color:blue;" href="https://github.com/borisdayma/dalle-mini">DALL·E mini</a></p>
|
67 |
+
"""
|
68 |
+
|
69 |
+
except ServiceError:
|
70 |
+
output_title = f"""
|
71 |
+
Sorry, there was an error retrieving the images. Please, try again later or <a href="mailto:[email protected]">contact us here</a>.
|
72 |
+
"""
|
73 |
+
predictions = None
|
74 |
+
output_description = ""
|
75 |
+
|
76 |
+
return (output_title, predictions, output_description)
|
77 |
+
|
78 |
+
outputs = [
|
79 |
+
gr.outputs.HTML(label=""), # To be used as title
|
80 |
+
gr.outputs.Image(label=''),
|
81 |
+
gr.outputs.HTML(label=""), # Additional text that appears in the screenshot
|
82 |
+
]
|
83 |
+
|
84 |
+
description = """
|
85 |
+
Welcome to DALL·E-mini, a text-to-image generation model.
|
86 |
+
"""
|
87 |
+
gr.Interface(run_inference,
|
88 |
+
inputs=[gr.inputs.Textbox(label='Prompt')],
|
89 |
+
outputs=outputs,
|
90 |
+
title='DALL·E mini',
|
91 |
+
description=description,
|
92 |
+
article="<p style='text-align: center'> DALLE·mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
|
93 |
+
layout='vertical',
|
94 |
+
theme='huggingface',
|
95 |
+
examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']],
|
96 |
+
allow_flagging=False,
|
97 |
+
live=False,
|
98 |
+
# server_name="0.0.0.0", # Bind to all interfaces
|
99 |
+
).launch()
|