Spaces:
Running
Running
Merge branch 'main' of https://github.com/borisdayma/dalle-mini into feat-setup
Browse files- .github/workflows/sync_to_hub_debug.yml +17 -0
- CITATION.cff +44 -0
- README.md +76 -5
- app/app.py +22 -3
- app/img/loading.gif +0 -0
- dev/requirements.txt +3 -5
.github/workflows/sync_to_hub_debug.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Deploy to debug app
|
2 |
+
|
3 |
+
on:
|
4 |
+
# to run this workflow manually from the Actions tab
|
5 |
+
workflow_dispatch:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
sync-to-hub-debug:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- uses: actions/checkout@v2
|
12 |
+
with:
|
13 |
+
fetch-depth: 0
|
14 |
+
- name: Push to hub
|
15 |
+
env:
|
16 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
17 |
+
run: git push --force https://boris:[email protected]/spaces/flax-community/dalle-mini-debug +HEAD:main
|
CITATION.cff
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YAML 1.2
|
2 |
+
---
|
3 |
+
abstract: "DALL·E mini is a JAX/Flax reimplementation of OpenAI's DALL·E that requires much smaller hardware resources. By simplifying the architecture and model memory requirements, as well as leveraging open-source code and pre-trained models, we were able to create a model that is 27 times smaller than the original DALL·E and train it on a single TPU v3-8 for only 3 days. DALL·E mini achieves impressive results, albeit of a lower quality than the original system. It can be used for exploration and further experimentation on commodity hardware."
|
4 |
+
authors:
|
5 |
+
-
|
6 |
+
family-names: Dayma
|
7 |
+
given-names: Boris
|
8 |
+
-
|
9 |
+
family-names: Patil
|
10 |
+
given-names: Suraj
|
11 |
+
-
|
12 |
+
family-names: Cuenca
|
13 |
+
given-names: Pedro
|
14 |
+
-
|
15 |
+
family-names: Saifullah
|
16 |
+
given-names: Khalid
|
17 |
+
-
|
18 |
+
family-names: Abraham
|
19 |
+
given-names: Tanishq
|
20 |
+
-
|
21 |
+
family-names: "Lê Khắc"
|
22 |
+
given-names: "Phúc"
|
23 |
+
-
|
24 |
+
family-names: Melas
|
25 |
+
given-names: Luke
|
26 |
+
-
|
27 |
+
family-names: Ghosh
|
28 |
+
given-names: Ritobrata
|
29 |
+
cff-version: "1.1.0"
|
30 |
+
date-released: 2021-07-29
|
31 |
+
identifiers:
|
32 |
+
keywords:
|
33 |
+
- dalle
|
34 |
+
- "text-to-image generation"
|
35 |
+
- transformer
|
36 |
+
- "zero-shot"
|
37 |
+
- JAX
|
38 |
+
license: "Apache-2.0"
|
39 |
+
doi: 10.5281/zenodo.5146400
|
40 |
+
message: "If you use this project, please cite it using these metadata."
|
41 |
+
repository-code: "https://github.com/borisdayma/dalle-mini"
|
42 |
+
title: "DALL·E Mini"
|
43 |
+
version: "v0.1-alpha"
|
44 |
+
...
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: DALL·E mini
|
3 |
emoji: 🥑
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
app_file: app/app.py
|
8 |
pinned: false
|
@@ -16,7 +16,7 @@ _Generate images from a text prompt_
|
|
16 |
|
17 |
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
|
18 |
|
19 |
-
You can create your own pictures with [the demo](https://huggingface.co/spaces/flax-community/dalle-mini)
|
20 |
|
21 |
## How does it work?
|
22 |
|
@@ -52,7 +52,16 @@ To generate sample predictions and understand the inference pipeline step by ste
|
|
52 |
|
53 |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb)
|
54 |
|
55 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
58 |
|
@@ -70,4 +79,66 @@ The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL
|
|
70 |
## Acknowledgements
|
71 |
|
72 |
- 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
|
73 |
-
- Google Cloud
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: DALL·E mini
|
3 |
emoji: 🥑
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
sdk: streamlit
|
7 |
app_file: app/app.py
|
8 |
pinned: false
|
|
|
16 |
|
17 |
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
|
18 |
|
19 |
+
You can create your own pictures with [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).
|
20 |
|
21 |
## How does it work?
|
22 |
|
|
|
52 |
|
53 |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb)
|
54 |
|
55 |
+
## FAQ
|
56 |
+
|
57 |
+
### Where to find the latest models?
|
58 |
+
|
59 |
+
Trained models are on 🤗 Model Hub:
|
60 |
+
|
61 |
+
- [VQGAN-f16-16384](https://huggingface.co/flax-community/vqgan_f16_16384) for encoding/decoding images
|
62 |
+
- [DALL·E mini](https://huggingface.co/flax-community/dalle-mini) for generating images from a text prompt
|
63 |
+
|
64 |
+
### Where does the logo come from?
|
65 |
|
66 |
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
67 |
|
|
|
79 |
## Acknowledgements
|
80 |
|
81 |
- 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
|
82 |
+
- Google [TPU Research Cloud (TRC) program](https://sites.research.google/trc/) for providing computing resources
|
83 |
+
- [Weights & Biases](https://wandb.com/) for providing the infrastructure for experiment tracking and model management
|
84 |
+
|
85 |
+
## Citing DALL·E mini
|
86 |
+
|
87 |
+
If you find DALL·E mini useful in your research or wish to refer, please use the following BibTeX entry.
|
88 |
+
|
89 |
+
```
|
90 |
+
@misc{Dayma_DALL·E_Mini_2021,
|
91 |
+
author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
|
92 |
+
doi = {10.5281/zenodo.5146400},
|
93 |
+
month = {7},
|
94 |
+
title = {DALL·E Mini},
|
95 |
+
url = {https://github.com/borisdayma/dalle-mini},
|
96 |
+
year = {2021}
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
## References
|
101 |
+
|
102 |
+
```
|
103 |
+
@misc{ramesh2021zeroshot,
|
104 |
+
title={Zero-Shot Text-to-Image Generation},
|
105 |
+
author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
|
106 |
+
year={2021},
|
107 |
+
eprint={2102.12092},
|
108 |
+
archivePrefix={arXiv},
|
109 |
+
primaryClass={cs.CV}
|
110 |
+
}
|
111 |
+
```
|
112 |
+
|
113 |
+
```
|
114 |
+
@misc{esser2021taming,
|
115 |
+
title={Taming Transformers for High-Resolution Image Synthesis},
|
116 |
+
author={Patrick Esser and Robin Rombach and Björn Ommer},
|
117 |
+
year={2021},
|
118 |
+
eprint={2012.09841},
|
119 |
+
archivePrefix={arXiv},
|
120 |
+
primaryClass={cs.CV}
|
121 |
+
}
|
122 |
+
```
|
123 |
+
|
124 |
+
```
|
125 |
+
@misc{lewis2019bart,
|
126 |
+
title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension},
|
127 |
+
author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer},
|
128 |
+
year={2019},
|
129 |
+
eprint={1910.13461},
|
130 |
+
archivePrefix={arXiv},
|
131 |
+
primaryClass={cs.CL}
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
135 |
+
```
|
136 |
+
@misc{radford2021learning,
|
137 |
+
title={Learning Transferable Visual Models From Natural Language Supervision},
|
138 |
+
author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
|
139 |
+
year={2021},
|
140 |
+
eprint={2103.00020},
|
141 |
+
archivePrefix={arXiv},
|
142 |
+
primaryClass={cs.CV}
|
143 |
+
}
|
144 |
+
```
|
app/app.py
CHANGED
@@ -55,12 +55,31 @@ st.subheader('Generate images from text')
|
|
55 |
|
56 |
prompt = st.text_input("What do you want to see?")
|
57 |
|
58 |
-
|
59 |
-
|
60 |
DEBUG = False
|
61 |
if prompt != "" or (should_run_again and prompt != ""):
|
62 |
container = st.empty()
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
try:
|
66 |
backend_url = st.secrets["BACKEND_SERVER"]
|
|
|
55 |
|
56 |
prompt = st.text_input("What do you want to see?")
|
57 |
|
58 |
+
test = st.empty()
|
|
|
59 |
DEBUG = False
|
60 |
if prompt != "" or (should_run_again and prompt != ""):
|
61 |
container = st.empty()
|
62 |
+
# The following mimics `streamlit.info()`.
|
63 |
+
# I tried to get the secondary background color using `components.streamlit.config.get_options_for_section("theme")["secondaryBackgroundColor"]`
|
64 |
+
# but it returns None.
|
65 |
+
container.markdown(f"""
|
66 |
+
<style> p {{ margin:0 }} div {{ margin:0 }} </style>
|
67 |
+
<div data-stale="false" class="element-container css-1e5imcs e1tzin5v1">
|
68 |
+
<div class="stAlert">
|
69 |
+
<div role="alert" data-baseweb="notification" class="st-ae st-af st-ag st-ah st-ai st-aj st-ak st-g3 st-am st-b8 st-ao st-ap st-aq st-ar st-as st-at st-au st-av st-aw st-ax st-ay st-az st-b9 st-b1 st-b2 st-b3 st-b4 st-b5 st-b6">
|
70 |
+
<div class="st-b7">
|
71 |
+
<div class="css-whx05o e13vu3m50">
|
72 |
+
<div data-testid="stMarkdownContainer" class="css-1ekf893 e16nr0p30">
|
73 |
+
<img src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/app/img/loading.gif" width="30"/>
|
74 |
+
Generating predictions for: <b>{prompt}</b>
|
75 |
+
</div>
|
76 |
+
</div>
|
77 |
+
</div>
|
78 |
+
</div>
|
79 |
+
</div>
|
80 |
+
</div>
|
81 |
+
<small><i>Predictions may take up to 40s under high load. Please stand by.</i></small>
|
82 |
+
""", unsafe_allow_html=True)
|
83 |
|
84 |
try:
|
85 |
backend_url = st.secrets["BACKEND_SERVER"]
|
app/img/loading.gif
ADDED
dev/requirements.txt
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
# Note: install with the following command:
|
2 |
-
# pip install -r requirements.txt -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
3 |
-
# Otherwise it won't find the appropriate libtpu_nightly
|
4 |
requests
|
|
|
5 |
jax[tpu]>=0.2.16
|
6 |
-
|
7 |
-
|
8 |
flax
|
9 |
jupyter
|
10 |
wandb
|
|
|
|
|
|
|
|
|
1 |
requests
|
2 |
+
-f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
3 |
jax[tpu]>=0.2.16
|
4 |
+
transformers
|
5 |
+
datasets
|
6 |
flax
|
7 |
jupyter
|
8 |
wandb
|