Spaces:
Runtime error
Runtime error
File size: 5,352 Bytes
c068c68 08d4272 c068c68 08d4272 c068c68 08d4272 c068c68 08d4272 c068c68 08d4272 c068c68 08d4272 c068c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import json
import random
import requests
from mtranslate import translate
import streamlit as st
LOGO = "https://raw.githubusercontent.com/nlp-en-es/assets/main/logo.png"
MODELS = {
"Model trained on OSCAR": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt-2-spanish"
},
"Model trained on the Large Spanish Corpus": {
"url": "https://api-inference.huggingface.co/models/mrm8488/spanish-gpt2"
},
}
PROMPT_LIST = {
"Érase una vez...": ["Érase una vez "],
"¡Hola!": ["¡Hola! Me llamo "],
"¿Ser o no ser?": ["En mi opinión, 'ser' es "],
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request(
"POST", MODELS[model_name]["url"], headers={}, data=data
)
return json.loads(response.content.decode("utf-8"))
def process(
text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float
):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
},
}
return query(payload, model_name)
# Page
st.set_page_config(page_title="Spanish GPT-2 Demo", page_icon=LOGO)
st.title("Spanish GPT-2")
# Sidebar
st.sidebar.image(LOGO)
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated.",
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities.",
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
do_sample = st.sidebar.selectbox(
"Sampling?",
(True, False),
help="Whether or not to use sampling; use greedy decoding otherwise.",
)
# Body
st.markdown(
"""
Spanish GPT-2 models trained from scratch on two different datasets. One
model is trained on the Spanish portion of
[OSCAR](https://huggingface.co/datasets/viewer/?dataset=oscar)
and the other on the
[large_spanish_corpus](https://huggingface.co/datasets/viewer/?dataset=large_spanish_corpus)
aka BETO's corpus.
The models are trained with Flax and using TPUs sponsored by Google since this is part of the
[Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104)
organised by HuggingFace.
"""
)
model_name = st.selectbox("Model", (list(MODELS.keys())))
ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"]
prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1)
if prompt == "Custom":
prompt_box = "Enter your text here"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(
text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p),
)
print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}.', end=" ")
if "estimated_time" in result:
st.write(
f'Please try again in about {result["estimated_time"]:.0f} seconds.'
)
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f"{error}")
else:
result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("English translation")
st.write(translate(result, "en", "es").replace("\n", " \n"))
st.markdown(
"""
### Team members
- Manuel Romero ([mrm8488](https://huggingface.co/mrm8488))
- María Grandury ([mariagrandury](https://huggingface.co/mariagrandury))
- Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps))
- Daniel Vera ([daveni](https://huggingface.co/daveni))
- Sri Lakshmi ([srisweet](https://huggingface.co/srisweet))
- José Posada ([jdposa](https://huggingface.co/jdposa))
- Santiago Hincapie ([shpotes](https://huggingface.co/shpotes))
- Jorge ([jorgealro](https://huggingface.co/jorgealro))
### More information
You can find more information about these models in their cards:
- [Model trained on OSCAR](https://huggingface.co/models/flax-community/gpt-2-spanish)
- [Model trained on the Large Spanish Corpus](https://huggingface.co/mrm8488/spanish-gpt2)
"""
)
|