import json import random import requests from mtranslate import translate import streamlit as st LOGO = "https://raw.githubusercontent.com/nlp-en-es/assets/main/logo.png" MODELS = { "Model trained on OSCAR": { "url": "https://api-inference.huggingface.co/models/flax-community/gpt-2-spanish" }, "Model trained on the Large Spanish Corpus": { "url": "https://api-inference.huggingface.co/models/mrm8488/spanish-gpt2" }, } PROMPT_LIST = { "Érase una vez...": ["Érase una vez "], "¡Hola!": ["¡Hola! Me llamo "], "¿Ser o no ser?": ["En mi opinión, 'ser' es "], } def query(payload, model_name): data = json.dumps(payload) print("model url:", MODELS[model_name]["url"]) response = requests.request( "POST", MODELS[model_name]["url"], headers={}, data=data ) return json.loads(response.content.decode("utf-8")) def process( text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float ): payload = { "inputs": text, "parameters": { "max_new_tokens": max_len, "top_k": top_k, "top_p": top_p, "temperature": temp, "repetition_penalty": 2.0, }, "options": { "use_cache": True, }, } return query(payload, model_name) # Page st.set_page_config(page_title="Spanish GPT-2 Demo", page_icon=LOGO) st.title("Spanish GPT-2") # Sidebar st.sidebar.image(LOGO) st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.number_input( "Maximum length", value=100, help="The maximum length of the sequence to be generated.", ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.1, max_value=100.0, help="The value used to module the next token probabilities.", ) top_k = st.sidebar.number_input( "Top k", value=10, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) top_p = st.sidebar.number_input( "Top p", value=0.95, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) do_sample = st.sidebar.selectbox( "Sampling?", (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.", ) # Body st.markdown( """ Spanish GPT-2 models trained from scratch on two different datasets. One model is trained on the Spanish portion of [OSCAR](https://huggingface.co/datasets/viewer/?dataset=oscar) and the other on the [large_spanish_corpus](https://huggingface.co/datasets/viewer/?dataset=large_spanish_corpus) aka BETO's corpus. The models are trained with Flax and using TPUs sponsored by Google since this is part of the [Flax/Jax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organised by HuggingFace. """ ) model_name = st.selectbox("Model", (list(MODELS.keys()))) ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"] prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1) if prompt == "Custom": prompt_box = "Enter your text here" else: prompt_box = random.choice(PROMPT_LIST[prompt]) text = st.text_area("Enter text", prompt_box) if st.button("Run"): with st.spinner(text="Getting results..."): st.subheader("Result") print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") result = process( text=text, model_name=model_name, max_len=int(max_len), temp=temp, top_k=int(top_k), top_p=float(top_p), ) print("result:", result) if "error" in result: if type(result["error"]) is str: st.write(f'{result["error"]}.', end=" ") if "estimated_time" in result: st.write( f'Please try again in about {result["estimated_time"]:.0f} seconds.' ) else: if type(result["error"]) is list: for error in result["error"]: st.write(f"{error}") else: result = result[0]["generated_text"] st.write(result.replace("\n", " \n")) st.text("English translation") st.write(translate(result, "en", "es").replace("\n", " \n")) st.markdown( """ ### Team members - Manuel Romero ([mrm8488](https://huggingface.co/mrm8488)) - María Grandury ([mariagrandury](https://huggingface.co/mariagrandury)) - Pablo González de Prado ([Pablogps](https://huggingface.co/Pablogps)) - Daniel Vera ([daveni](https://huggingface.co/daveni)) - Sri Lakshmi ([srisweet](https://huggingface.co/srisweet)) - José Posada ([jdposa](https://huggingface.co/jdposa)) - Santiago Hincapie ([shpotes](https://huggingface.co/shpotes)) - Jorge ([jorgealro](https://huggingface.co/jorgealro)) ### More information You can find more information about these models in their cards: - [Model trained on OSCAR](https://huggingface.co/models/flax-community/gpt-2-spanish) - [Model trained on the Large Spanish Corpus](https://huggingface.co/mrm8488/spanish-gpt2) """ )