Spaces:
Running
Running
File size: 7,369 Bytes
afe1a07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
"""
Feature Fusion for Varible-Length Data Processing
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
"""
import torch
import torch.nn as nn
class DAF(nn.Module):
"""
直接相加 DirectAddFuse
"""
def __init__(self):
super(DAF, self).__init__()
def forward(self, x, residual):
return x + residual
class iAFF(nn.Module):
"""
多特征融合 iAFF
"""
def __init__(self, channels=64, r=4, type="2D"):
super(iAFF, self).__init__()
inter_channels = int(channels // r)
if type == "1D":
# 本地注意力
self.local_att = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 全局注意力
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 第二次本地注意力
self.local_att2 = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
# 第二次全局注意力
self.global_att2 = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
elif type == "2D":
# 本地注意力
self.local_att = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 全局注意力
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 第二次本地注意力
self.local_att2 = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
# 第二次全局注意力
self.global_att2 = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
else:
raise f"the type is not supported"
self.sigmoid = nn.Sigmoid()
def forward(self, x, residual):
flag = False
xa = x + residual
if xa.size(0) == 1:
xa = torch.cat([xa, xa], dim=0)
flag = True
xl = self.local_att(xa)
xg = self.global_att(xa)
xlg = xl + xg
wei = self.sigmoid(xlg)
xi = x * wei + residual * (1 - wei)
xl2 = self.local_att2(xi)
xg2 = self.global_att(xi)
xlg2 = xl2 + xg2
wei2 = self.sigmoid(xlg2)
xo = x * wei2 + residual * (1 - wei2)
if flag:
xo = xo[0].unsqueeze(0)
return xo
class AFF(nn.Module):
"""
多特征融合 AFF
"""
def __init__(self, channels=64, r=4, type="2D"):
super(AFF, self).__init__()
inter_channels = int(channels // r)
if type == "1D":
self.local_att = nn.Sequential(
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm1d(channels),
)
elif type == "2D":
self.local_att = nn.Sequential(
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
self.global_att = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(inter_channels),
nn.ReLU(inplace=True),
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(channels),
)
else:
raise f"the type is not supported."
self.sigmoid = nn.Sigmoid()
def forward(self, x, residual):
flag = False
xa = x + residual
if xa.size(0) == 1:
xa = torch.cat([xa, xa], dim=0)
flag = True
xl = self.local_att(xa)
xg = self.global_att(xa)
xlg = xl + xg
wei = self.sigmoid(xlg)
xo = 2 * x * wei + 2 * residual * (1 - wei)
if flag:
xo = xo[0].unsqueeze(0)
return xo
|