File size: 11,261 Bytes
afe1a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import json
import logging
import os
import re
from copy import deepcopy
from pathlib import Path

import torch

from .model import CLAP, convert_weights_to_fp16
from .openai import load_openai_model
from .pretrained import get_pretrained_url, download_pretrained
from .transform import image_transform

_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {}  # directory (model_name: config) of model architecture configs


def _natural_key(string_):
    return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]


def _rescan_model_configs():
    global _MODEL_CONFIGS

    config_ext = (".json",)
    config_files = []
    for config_path in _MODEL_CONFIG_PATHS:
        if config_path.is_file() and config_path.suffix in config_ext:
            config_files.append(config_path)
        elif config_path.is_dir():
            for ext in config_ext:
                config_files.extend(config_path.glob(f"*{ext}"))

    for cf in config_files:
        if os.path.basename(cf)[0] == ".":
            continue  # Ignore hidden files

        with open(cf, "r") as f:
            model_cfg = json.load(f)
            if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
                _MODEL_CONFIGS[cf.stem] = model_cfg

    _MODEL_CONFIGS = {
        k: v
        for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
    }


_rescan_model_configs()  # initial populate of model config registry


def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
    checkpoint = torch.load(checkpoint_path, map_location=map_location)
    if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
        state_dict = checkpoint["state_dict"]
    else:
        state_dict = checkpoint
    if skip_params:
        if next(iter(state_dict.items()))[0].startswith("module"):
            state_dict = {k[7:]: v for k, v in state_dict.items()}
    # for k in state_dict:
    #     if k.startswith('transformer'):
    #         v = state_dict.pop(k)
    #         state_dict['text_branch.' + k[12:]] = v
    return state_dict


def create_model(

    amodel_name: str,

    tmodel_name: str,

    pretrained: str = "",

    precision: str = "fp32",

    device: torch.device = torch.device("cpu"),

    jit: bool = False,

    force_quick_gelu: bool = False,

    openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),

    skip_params=True,

    pretrained_audio: str = "",

    pretrained_text: str = "",

    enable_fusion: bool = False,

    fusion_type: str = "None"

    # pretrained_image: bool = False,

):
    amodel_name = amodel_name.replace(
        "/", "-"
    )  # for callers using old naming with / in ViT names
    pretrained_orig = pretrained
    pretrained = pretrained.lower()
    if pretrained == "openai":
        if amodel_name in _MODEL_CONFIGS:
            logging.info(f"Loading {amodel_name} model config.")
            model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
        else:
            logging.error(
                f"Model config for {amodel_name} not found; available models {list_models()}."
            )
            raise RuntimeError(f"Model config for {amodel_name} not found.")

        logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
        # Hard Code in model name
        model_cfg["text_cfg"]["model_type"] = tmodel_name
        model = load_openai_model(
            "ViT-B-16",
            model_cfg,
            device=device,
            jit=jit,
            cache_dir=openai_model_cache_dir,
            enable_fusion=enable_fusion,
            fusion_type=fusion_type,
        )
        # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
        if precision == "amp" or precision == "fp32":
            model = model.float()
    else:
        if amodel_name in _MODEL_CONFIGS:
            logging.info(f"Loading {amodel_name} model config.")
            model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
        else:
            logging.error(
                f"Model config for {amodel_name} not found; available models {list_models()}."
            )
            raise RuntimeError(f"Model config for {amodel_name} not found.")

        if force_quick_gelu:
            # override for use of QuickGELU on non-OpenAI transformer models
            model_cfg["quick_gelu"] = True

        # if pretrained_image:
        #     if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
        #         # pretrained weight loading for timm models set via vision_cfg
        #         model_cfg['vision_cfg']['timm_model_pretrained'] = True
        #     else:
        #         assert False, 'pretrained image towers currently only supported for timm models'
        model_cfg["text_cfg"]["model_type"] = tmodel_name
        model_cfg["enable_fusion"] = enable_fusion
        model_cfg["fusion_type"] = fusion_type
        model = CLAP(**model_cfg)

        if pretrained:
            checkpoint_path = ""
            url = get_pretrained_url(amodel_name, pretrained)
            if url:
                checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
            elif os.path.exists(pretrained_orig):
                checkpoint_path = pretrained_orig
            if checkpoint_path:
                logging.info(
                    f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})."
                )
                ckpt = load_state_dict(checkpoint_path, skip_params=True)
                model.load_state_dict(ckpt)
                param_names = [n for n, p in model.named_parameters()]
                # for n in param_names:
                #     print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
            else:
                logging.warning(
                    f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
                )
                raise RuntimeError(
                    f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
                )

        if pretrained_audio:
            if amodel_name.startswith("PANN"):
                if "Cnn14_mAP" in pretrained_audio:  # official checkpoint
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                    audio_ckpt = audio_ckpt["model"]
                    keys = list(audio_ckpt.keys())
                    for key in keys:
                        if (
                            "spectrogram_extractor" not in key
                            and "logmel_extractor" not in key
                        ):
                            v = audio_ckpt.pop(key)
                            audio_ckpt["audio_branch." + key] = v
                elif os.path.basename(pretrained_audio).startswith(
                    "PANN"
                ):  # checkpoint trained via HTSAT codebase
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                    audio_ckpt = audio_ckpt["state_dict"]
                    keys = list(audio_ckpt.keys())
                    for key in keys:
                        if key.startswith("sed_model"):
                            v = audio_ckpt.pop(key)
                            audio_ckpt["audio_branch." + key[10:]] = v
                elif os.path.basename(pretrained_audio).startswith(
                    "finetuned"
                ):  # checkpoint trained via linear probe codebase
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                else:
                    raise ValueError("Unknown audio checkpoint")
            elif amodel_name.startswith("HTSAT"):
                if "HTSAT_AudioSet_Saved" in pretrained_audio:  # official checkpoint
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                    audio_ckpt = audio_ckpt["state_dict"]
                    keys = list(audio_ckpt.keys())
                    for key in keys:
                        if key.startswith("sed_model") and (
                            "spectrogram_extractor" not in key
                            and "logmel_extractor" not in key
                        ):
                            v = audio_ckpt.pop(key)
                            audio_ckpt["audio_branch." + key[10:]] = v
                elif os.path.basename(pretrained_audio).startswith(
                    "HTSAT"
                ):  # checkpoint trained via HTSAT codebase
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                    audio_ckpt = audio_ckpt["state_dict"]
                    keys = list(audio_ckpt.keys())
                    for key in keys:
                        if key.startswith("sed_model"):
                            v = audio_ckpt.pop(key)
                            audio_ckpt["audio_branch." + key[10:]] = v
                elif os.path.basename(pretrained_audio).startswith(
                    "finetuned"
                ):  # checkpoint trained via linear probe codebase
                    audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
                else:
                    raise ValueError("Unknown audio checkpoint")
            else:
                raise f"this audio encoder pretrained checkpoint is not support"

            model.load_state_dict(audio_ckpt, strict=False)
            logging.info(
                f"Loading pretrained {amodel_name} weights ({pretrained_audio})."
            )
            param_names = [n for n, p in model.named_parameters()]
            for n in param_names:
                print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")

        model.to(device=device)
        if precision == "fp16":
            assert device.type != "cpu"
            convert_weights_to_fp16(model)

        if jit:
            model = torch.jit.script(model)

    return model, model_cfg


def create_model_and_transforms(

    model_name: str,

    pretrained: str = "",

    precision: str = "fp32",

    device: torch.device = torch.device("cpu"),

    jit: bool = False,

    force_quick_gelu: bool = False,

    # pretrained_image: bool = False,

):
    model = create_model(
        model_name,
        pretrained,
        precision,
        device,
        jit,
        force_quick_gelu=force_quick_gelu,
        # pretrained_image=pretrained_image
    )
    preprocess_train = image_transform(model.visual.image_size, is_train=True)
    preprocess_val = image_transform(model.visual.image_size, is_train=False)
    return model, preprocess_train, preprocess_val


def list_models():
    """enumerate available model architectures based on config files"""
    return list(_MODEL_CONFIGS.keys())


def add_model_config(path):
    """add model config path or file and update registry"""
    if not isinstance(path, Path):
        path = Path(path)
    _MODEL_CONFIG_PATHS.append(path)
    _rescan_model_configs()