File size: 5,179 Bytes
afe1a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
""" OpenAI pretrained model functions



Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.

"""

import os
import warnings
from typing import Union, List

import torch

from .model import build_model_from_openai_state_dict
from .pretrained import (
    get_pretrained_url,
    list_pretrained_tag_models,
    download_pretrained,
)

__all__ = ["list_openai_models", "load_openai_model"]


def list_openai_models() -> List[str]:
    """Returns the names of available CLIP models"""
    return list_pretrained_tag_models("openai")


def load_openai_model(

    name: str,

    model_cfg,

    device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",

    jit=True,

    cache_dir=os.path.expanduser("~/.cache/clip"),

    enable_fusion: bool = False,

    fusion_type: str = "None",

):
    """Load a CLIP model, preserve its text pretrained part, and set in the CLAP model



    Parameters

    ----------

    name : str

        A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict

    device : Union[str, torch.device]

        The device to put the loaded model

    jit : bool

        Whether to load the optimized JIT model (default) or more hackable non-JIT model.



    Returns

    -------

    model : torch.nn.Module

        The CLAP model

    preprocess : Callable[[PIL.Image], torch.Tensor]

        A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input

    """
    if get_pretrained_url(name, "openai"):
        model_path = download_pretrained(
            get_pretrained_url(name, "openai"), root=cache_dir
        )
    elif os.path.isfile(name):
        model_path = name
    else:
        raise RuntimeError(
            f"Model {name} not found; available models = {list_openai_models()}"
        )

    try:
        # loading JIT archive
        model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
        state_dict = None
    except RuntimeError:
        # loading saved state dict
        if jit:
            warnings.warn(
                f"File {model_path} is not a JIT archive. Loading as a state dict instead"
            )
            jit = False
        state_dict = torch.load(model_path, map_location="cpu")

    if not jit:
        try:
            model = build_model_from_openai_state_dict(
                state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type
            ).to(device)
        except KeyError:
            sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
            model = build_model_from_openai_state_dict(
                sd, model_cfg, enable_fusion, fusion_type
            ).to(device)

        if str(device) == "cpu":
            model.float()
        return model

    # patch the device names
    device_holder = torch.jit.trace(
        lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
    )
    device_node = [
        n
        for n in device_holder.graph.findAllNodes("prim::Constant")
        if "Device" in repr(n)
    ][-1]

    def patch_device(module):
        try:
            graphs = [module.graph] if hasattr(module, "graph") else []
        except RuntimeError:
            graphs = []

        if hasattr(module, "forward1"):
            graphs.append(module.forward1.graph)

        for graph in graphs:
            for node in graph.findAllNodes("prim::Constant"):
                if "value" in node.attributeNames() and str(node["value"]).startswith(
                    "cuda"
                ):
                    node.copyAttributes(device_node)

    model.apply(patch_device)
    patch_device(model.encode_audio)
    patch_device(model.encode_text)

    # patch dtype to float32 on CPU
    if str(device) == "cpu":
        float_holder = torch.jit.trace(
            lambda: torch.ones([]).float(), example_inputs=[]
        )
        float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
        float_node = float_input.node()

        def patch_float(module):
            try:
                graphs = [module.graph] if hasattr(module, "graph") else []
            except RuntimeError:
                graphs = []

            if hasattr(module, "forward1"):
                graphs.append(module.forward1.graph)

            for graph in graphs:
                for node in graph.findAllNodes("aten::to"):
                    inputs = list(node.inputs())
                    for i in [
                        1,
                        2,
                    ]:  # dtype can be the second or third argument to aten::to()
                        if inputs[i].node()["value"] == 5:
                            inputs[i].node().copyAttributes(float_node)

        model.apply(patch_float)
        patch_float(model.encode_audio)
        patch_float(model.encode_text)
        model.float()

    model.audio_branch.audio_length = model.audio_cfg.audio_length
    return model