Spaces:
Running
Running
File size: 14,709 Bytes
afe1a07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import torch
import os
import argparse
import logging
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from copy import deepcopy
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from glob import glob
import yaml
from collections import OrderedDict
from time import time
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from audioldm2.utilities.data.dataset import AudioDataset
from constants import build_model
from utils import load_clip, load_clap, load_t5
from thop import profile
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def cleanup():
"""
End DDP training.
"""
dist.destroy_process_group()
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
format='[\033[34m%(asctime)s\033[0m] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
class RF(torch.nn.Module):
def __init__(self, ln=True):
super().__init__()
self.ln = ln
self.stratified = False
def forward(self, model, x, **kwargs):
b = x.size(0)
if self.ln:
if self.stratified:
# stratified sampling of normals
# first stratified sample from uniform
quantiles = torch.linspace(0, 1, b + 1).to(x.device)
z = quantiles[:-1] + torch.rand((b,)).to(x.device) / b
# now transform to normal
z = torch.erfinv(2 * z - 1) * math.sqrt(2)
t = torch.sigmoid(z)
else:
nt = torch.randn((b,)).to(x.device)
t = torch.sigmoid(nt)
else:
t = torch.rand((b,)).to(x.device)
texp = t.view([b, *([1] * len(x.shape[1:]))])
z1 = torch.randn_like(x)
zt = (1 - texp) * x + texp * z1
# make t, zt into same dtype as x
zt, t = zt.to(x.dtype), t.to(x.dtype)
vtheta = model(x=zt, t=t, **kwargs)
# print(z1.size(), x.size(), vtheta.size())
batchwise_mse = ((z1 - x - vtheta) ** 2).mean(dim=list(range(1, len(x.shape))))
tlist = batchwise_mse.detach().cpu().reshape(-1).tolist()
ttloss = [(tv, tloss) for tv, tloss in zip(t, tlist)]
return batchwise_mse.mean(), {"batchwise_loss": ttloss}
@torch.no_grad()
def sample(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs):
b = z.size(0)
dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))])
images = [z]
for i in range(sample_steps, 0, -1):
t = i / sample_steps
t = torch.tensor([t] * b).to(z.device)
vc = model(x=z, t=t, **conds)
if null_cond is not None:
vu = model(x=z, t=t, **null_cond)
vc = vu + cfg * (vc - vu)
z = z - dt * vc
images.append(z)
return images
@torch.no_grad()
def sample_with_xps(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs):
b = z.size(0)
dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))])
images = [z]
for i in range(sample_steps, 0, -1):
t = i / sample_steps
t = torch.tensor([t] * b).to(z.device)
# print(z.size(), t.size())
vc = model(x=z, t=t, **conds)
if null_cond is not None:
vu = model(x=z, t=t, **null_cond)
vc = vu + cfg * (vc - vu)
x = z - i * dt * vc
z = z - dt * vc
images.append(x)
return images
def prepare_model_inputs(args, batch, device, vae, clip, t5,):
text_embedding, text_embedding_mask = batch['text_embedding'], batch['text_embedding_mask']
text_embedding_t5, text_embedding_mask_t5 = batch['text_embedding_t5'], batch['text_embedding_mask_t5']
# print(image.size(), text_embedding.size(), text_embedding_t5.size())
# clip & mT5 text embedding
text_embedding = text_embedding.to(device)
text_embedding_mask = text_embedding_mask.to(device)
with torch.no_grad():
encoder_hidden_states = clip.hf_module(
text_embedding.to(device),
attention_mask=text_embedding_mask,
output_hidden_states=False,
)["pooler_output"] # ()
# print(encoder_hidden_states.size())
text_embedding_t5 = text_embedding_t5.to(device).squeeze(1)
text_embedding_mask_t5 = text_embedding_mask_t5.to(device).squeeze(1)
with torch.no_grad():
output_t5 = t5.hf_module(
input_ids=text_embedding_t5,
attention_mask=text_embedding_mask_t5,
output_hidden_states=False,
)
encoder_hidden_states_t5 = output_t5["last_hidden_state"].detach()
with torch.no_grad():
image = vae.encode(batch['log_mel_spec'].unsqueeze(1).to(device)).latent_dist.sample().mul_(vae.config.scaling_factor)
# positional embedding
bs, c, h, w = image.shape
image = rearrange(image, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2).float()
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros(bs, encoder_hidden_states_t5.shape[1], 3)
# Model conditions
model_kwargs = dict(
img_ids=img_ids.to(image.device),
txt = encoder_hidden_states_t5.to(image.device).float(),
txt_ids = txt_ids.to(image.device),
y = encoder_hidden_states.to(image.device).float(),
)
return image, model_kwargs
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
dist.init_process_group("nccl")
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.version.replace("/", "-") # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders)
experiment_dir = f"{args.results_dir}/{model_string_name}" # Create an experiment folder
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
else:
logger = create_logger(None)
model = build_model(args.version).to(device)
parameters_sum = sum(x.numel() for x in model.parameters())
logger.info(f"{parameters_sum / 1000000.0} M")
if args.resume is not None:
print('load from: ', args.resume)
resume_ckpt = torch.load(args.resume, map_location=lambda storage, loc: storage)['ema']
model.load_state_dict(resume_ckpt)
# Note that parameter initialization is done within the DiT constructor
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
model = DDP(model.to(device), device_ids=[rank])
diffusion = RF()
model_path = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/audioldm2'
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae')).to(device)
# vocoder = SpeechT5HifiGan.from_pretrained(os.path.join(model_path, 'vocoder')).to(device)
t5 = load_t5(device, max_length=256)
clap = load_clap(device, max_length=256)
# clip = load_clip(device)
opt = torch.optim.AdamW(model.parameters(), lr=3e-5, weight_decay=0)
config = yaml.load(
open(
'config/16k_64.yaml',
'r'
),
Loader=yaml.FullLoader,
)
dataset = AudioDataset(
config=config, split="train",
waveform_only=False,
dataset_json_path=args.data_path,
tokenizer=clap.tokenizer,
uncond_pro=0.1,
text_ctx_len=77,
tokenizer_t5=t5.tokenizer,
text_ctx_len_t5=256,
uncond_pro_t5=0.1,
)
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=int(args.global_batch_size // dist.get_world_size()),
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
logger.info(f"Dataset contains {len(dataset):,}")
# Prepare models for training:
update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
# Variables for monitoring/logging purposes:
train_steps = 0
log_steps = 0
running_loss = 0
start_time = time()
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(args.epochs):
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
data_iter_step = 0
for batch in loader:
latents, model_kwargs = prepare_model_inputs(args, batch, device, vae, clap, t5,)
loss, _ = diffusion.forward(model=model, x=latents, **model_kwargs)
# print(loss)
if (data_iter_step + 1) % args.accum_iter == 0:
opt.zero_grad()
loss.backward()
opt.step()
update_ema(ema, model.module)
data_iter_step += 1
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time()
# Save DiT checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
checkpoint = {
# "model": model.module.state_dict(),
"ema": ema.state_dict(),
"opt": opt.state_dict(),
"args": args
}
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
try:
torch.save(checkpoint, checkpoint_path)
except Exception as e:
print(e)
logger.info(f"Saved checkpoint to {checkpoint_path}")
dist.barrier()
# model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
cleanup()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default='fma_dataset.json')
parser.add_argument("--results-dir", type=str, default="results")
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--version", type=str, default="large")
parser.add_argument("--vae-path", type=str, default='audioldm2/vae')
parser.add_argument("--epochs", type=int, default=1400)
parser.add_argument("--global_batch_size", type=int, default=32)
parser.add_argument("--global-seed", type=int, default=1234)
parser.add_argument("--num-workers", type=int, default=4)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument('--accum_iter', default=16, type=int,)
parser.add_argument("--ckpt-every", type=int, default=100_000)
parser.add_argument('--local-rank', type=int, default=-1, help='local rank passed from distributed launcher')
args = parser.parse_args()
main(args) |