Spaces:
Running
Running
import argparse | |
def get_default_params(model_name): | |
# Params from paper (https://arxiv.org/pdf/2103.00020.pdf) | |
model_name = model_name.lower() | |
if "vit" in model_name: | |
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6} | |
else: | |
return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8} | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--train-data", | |
type=str, | |
default=None, | |
help="Path to h5 filewith training data", | |
) | |
parser.add_argument( | |
"--val-data", | |
type=str, | |
default=None, | |
help="Path to h5 file with validation data", | |
) | |
parser.add_argument( | |
"--freeze-text", | |
default=False, | |
action="store_true", | |
help="if you need to freeze the text encoder, make this True", | |
) | |
parser.add_argument( | |
"--freeze-text-after", | |
type=int, | |
default=-1, | |
help="if you need to freeze the text encoder after (include) epoch x, set this param to x. Set -1 to disable it", | |
) | |
parser.add_argument( | |
"--train-ipc", | |
type=str, | |
default=None, | |
help="Path to npy file of the number of instance per class in training data", | |
) | |
parser.add_argument( | |
"--val-ipc", | |
type=str, | |
default=None, | |
help="Path to npy file of the number of instance per class in validation data", | |
) | |
parser.add_argument( | |
"--train-num-samples", | |
type=int, | |
default=None, | |
help="Number of samples in dataset. Required for webdataset if not available in info file.", | |
) | |
parser.add_argument( | |
"--val-num-samples", | |
type=int, | |
default=None, | |
help="Number of samples in dataset. Useful for webdataset if not available in info file.", | |
) | |
parser.add_argument( | |
"--dataset-type", | |
choices=["webdataset", "csv", "auto", "toy"], | |
default="auto", | |
help="Which type of dataset to process.", | |
) | |
parser.add_argument( | |
"--csv-separator", | |
type=str, | |
default="\t", | |
help="For csv-like datasets, which separator to use.", | |
) | |
parser.add_argument( | |
"--csv-img-key", | |
type=str, | |
default="filepath", | |
help="For csv-like datasets, the name of the key for the image paths.", | |
) | |
parser.add_argument( | |
"--csv-caption-key", | |
type=str, | |
default="title", | |
help="For csv-like datasets, the name of the key for the captions.", | |
) | |
parser.add_argument( | |
"--imagenet-val", | |
type=str, | |
default=None, | |
help="Path to imagenet val set for conducting zero shot evaluation.", | |
) | |
parser.add_argument( | |
"--imagenet-v2", | |
type=str, | |
default=None, | |
help="Path to imagenet v2 for conducting zero shot evaluation.", | |
) | |
parser.add_argument( | |
"--datasetnames", | |
nargs="+", | |
default=None, | |
help="If loading webdataset, spedify the dataset names to load. Can be some of these: Clotho, audioset, audiocaps, BBCSoundEffects", | |
) | |
parser.add_argument( | |
"--full-train-dataset", | |
nargs="+", | |
default=None, | |
help="Which dataset will be trained with all the subsets. (train+test)", | |
) | |
parser.add_argument( | |
"--exclude-eval-dataset", | |
nargs="+", | |
default=None, | |
help="Which dataset will be excluded with evaluation", | |
) | |
parser.add_argument( | |
"--datasetinfos", | |
nargs="+", | |
default=None, | |
help="If loading webdataset, spedify the dataset types to load. Can be some of these: train, test, valid, unbalanced_train, balanced_train, eval", | |
) | |
parser.add_argument( | |
"--dataset-proportion", | |
type=float, | |
default=1.0, | |
help="How much proportion of dataset we want to train.", | |
) | |
parser.add_argument( | |
"--remotedata", | |
default=False, | |
action="store_true", | |
help="if the dataset is remote, set this flag", | |
) | |
parser.add_argument( | |
"--class-label-path", | |
type=str, | |
default=None, | |
help="The path of the class label pickle or csv.", | |
) | |
parser.add_argument( | |
"--datasetpath", | |
type=str, | |
default="/mnt/audio_clip/webdataset_tar", | |
help="The path to the dataset", | |
) | |
parser.add_argument( | |
"--logs", | |
type=str, | |
default="./logs/", | |
help="Where to store tensorboard logs. Use None to avoid storing logs.", | |
) | |
parser.add_argument( | |
"--log-local", | |
action="store_true", | |
default=False, | |
help="log files on local master, otherwise global master only.", | |
) | |
parser.add_argument( | |
"--name", | |
type=str, | |
default=None, | |
help="Optional identifier for the experiment when storing logs. Otherwise use current time.", | |
) | |
parser.add_argument( | |
"--workers", type=int, default=1, help="Number of workers per GPU." | |
) | |
parser.add_argument( | |
"--batch-size", type=int, default=64, help="Batch size per GPU." | |
) | |
parser.add_argument( | |
"--epochs", type=int, default=32, help="Number of epochs to train for." | |
) | |
parser.add_argument("--lr", type=float, default=None, help="Learning rate.") | |
parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.") | |
parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.") | |
parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.") | |
parser.add_argument("--momentum", type=float, default=None, help="SGD epsilon.") | |
parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.") | |
parser.add_argument( | |
"--split-opt", | |
action="store_true", | |
default=False, | |
help="Use this flag to skip the learning rate decay.", | |
) | |
parser.add_argument( | |
"--lr-pretrained", type=float, default=None, help="Learning rate for text." | |
) | |
parser.add_argument( | |
"--beta1-pretrained", type=float, default=None, help="Adam beta 1 for text." | |
) | |
parser.add_argument( | |
"--beta2-pretrained", type=float, default=None, help="Adam beta 2 for text." | |
) | |
parser.add_argument( | |
"--eps-pretrained", type=float, default=None, help="Adam epsilon for text." | |
) | |
parser.add_argument( | |
"--wd-pretrained", type=float, default=0.2, help="Weight decay for text." | |
) | |
parser.add_argument( | |
"--momentum-pretrained", type=float, default=0.9, help="Momentum for text." | |
) | |
parser.add_argument( | |
"--lr-new", type=float, default=None, help="Learning rate for audio." | |
) | |
parser.add_argument( | |
"--beta1-new", type=float, default=None, help="Adam beta 1 for audio." | |
) | |
parser.add_argument( | |
"--beta2-new", type=float, default=None, help="Adam beta 2 for audio." | |
) | |
parser.add_argument( | |
"--eps-new", type=float, default=None, help="Adam epsilon for audio." | |
) | |
parser.add_argument( | |
"--wd-new", type=float, default=0.2, help="Weight decay for audio." | |
) | |
parser.add_argument( | |
"--momentum-new", type=float, default=0.9, help="Momentum for audio." | |
) | |
parser.add_argument( | |
"--warmup", type=int, default=10000, help="Number of steps to warmup for." | |
) | |
parser.add_argument( | |
"--use-bn-sync", | |
default=False, | |
action="store_true", | |
help="Whether to use batch norm sync.", | |
) | |
parser.add_argument( | |
"--skip-scheduler", | |
action="store_true", | |
default=False, | |
help="Use this flag to skip the learning rate decay.", | |
) | |
parser.add_argument( | |
"--save-frequency", type=int, default=1, help="How often to save checkpoints." | |
) | |
parser.add_argument( | |
"--save-top-performance", | |
type=int, | |
default=0, | |
help="Save the top x performance weights if the value >0", | |
) | |
parser.add_argument( | |
"--save-most-recent", | |
action="store_true", | |
default=False, | |
help="Always save the most recent model trained to epoch_latest.pt.", | |
) | |
parser.add_argument( | |
"--zeroshot-frequency", type=int, default=2, help="How often to run zero shot." | |
) | |
parser.add_argument( | |
"--val-frequency", | |
type=int, | |
default=1, | |
help="How often to run evaluation with val data.", | |
) | |
parser.add_argument( | |
"--resume", | |
default=None, | |
type=str, | |
help="path to latest checkpoint (default: none)", | |
) | |
parser.add_argument( | |
"--precision", | |
choices=["amp", "fp16", "fp32"], | |
default="amp", | |
help="Floating point precision.", | |
) | |
parser.add_argument( | |
"--amodel", | |
type=str, | |
default="RN50", | |
help="Name of the audio backbone to use.", | |
) | |
parser.add_argument( | |
"--tmodel", | |
type=str, | |
default="transformer", | |
help="Name of the text backbone to use. Can be [transformer, bert, roberta, bart]", | |
) | |
parser.add_argument( | |
"--pretrained-audio", | |
default="", | |
type=str, | |
help="Use a pretrained audio model weights for the audio encoder of CLAP", | |
) | |
parser.add_argument( | |
"--pretrained-text", | |
default="", | |
type=str, | |
help="Use a pretrained text model weights for the text encoder of CLAP", | |
) | |
parser.add_argument( | |
"--pretrained", | |
default="", | |
type=str, | |
help="Use a pretrained CLIP model weights with the specified tag or file path.", | |
) | |
parser.add_argument( | |
"--pretrained-image", | |
default=False, | |
action="store_true", | |
help="Load imagenet pretrained weights for image tower backbone if available.", | |
) | |
parser.add_argument( | |
"--lock-image", | |
default=False, | |
action="store_true", | |
help="Lock full image tower by disabling gradients.", | |
) | |
parser.add_argument( | |
"--lock-image-unlocked-groups", | |
type=int, | |
default=0, | |
help="Leave last n image tower layer groups unlocked.", | |
) | |
parser.add_argument( | |
"--lock-image-freeze-bn-stats", | |
default=False, | |
action="store_true", | |
help="Freeze BatchNorm running stats in image tower for any locked layers.", | |
) | |
parser.add_argument( | |
"--local-loss", | |
default=False, | |
action="store_true", | |
help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)", | |
) | |
parser.add_argument( | |
"--gather-with-grad", | |
default=False, | |
action="store_true", | |
help="enable full distributed gradient for feature gather", | |
) | |
parser.add_argument( | |
"--force-quick-gelu", | |
default=False, | |
action="store_true", | |
help="Force use of QuickGELU activation for non-OpenAI transformer models.", | |
) | |
parser.add_argument( | |
"--torchscript", | |
default=False, | |
action="store_true", | |
help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'", | |
) | |
parser.add_argument( | |
"--trace", | |
default=False, | |
action="store_true", | |
help="torch.jit.trace the model for inference / eval only", | |
) | |
# arguments for distributed training | |
parser.add_argument( | |
"--dist-url", | |
default="env://", | |
type=str, | |
help="url used to set up distributed training", | |
) | |
parser.add_argument( | |
"--dist-backend", default="nccl", type=str, help="distributed backend" | |
) | |
parser.add_argument( | |
"--report-to", | |
default="", | |
type=str, | |
help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']", | |
) | |
parser.add_argument( | |
"--wandb-notes", default="", type=str, help="Notes if logging with wandb" | |
) | |
parser.add_argument( | |
"--C", type=float, default=3.16, help="inverse regularizer for logistic reg." | |
) | |
parser.add_argument( | |
"--debug", | |
default=False, | |
action="store_true", | |
help="If true, more information is logged.", | |
) | |
parser.add_argument( | |
"--copy-codebase", | |
default=False, | |
action="store_true", | |
help="If true, we copy the entire base on the log diretory, and execute from there.", | |
) | |
parser.add_argument( | |
"--horovod", | |
default=False, | |
action="store_true", | |
help="Use horovod for distributed training.", | |
) | |
parser.add_argument( | |
"--ddp-static-graph", | |
default=False, | |
action="store_true", | |
help="Enable static graph optimization for DDP in PyTorch >= 1.11.", | |
) | |
parser.add_argument( | |
"--no-set-device-rank", | |
default=False, | |
action="store_true", | |
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).", | |
) | |
parser.add_argument("--seed", type=int, default=4242, help="Default random seed.") | |
parser.add_argument( | |
"--top-k-checkpoint-select-dataset", | |
type=str, | |
default="all", | |
help="The dataset of selecting top-k checkpoint.", | |
) | |
# @R10, @R@5, @R1, mAP@10 | |
parser.add_argument( | |
"--top-k-checkpoint-select-metric", | |
type=str, | |
default="_R@10", | |
help="The metric for selecting top-k checkpoint.", | |
) | |
parser.add_argument( | |
"--openai-model-cache-dir", | |
type=str, | |
default="~/.cache/clip", | |
help="Directory to download OpenAI models.", | |
) | |
parser.add_argument( | |
"--optimizer", | |
type=str, | |
default="adamw", | |
help="can be AdamW or SGD", | |
) | |
parser.add_argument( | |
"--parallel-eval", | |
default=False, | |
action="store_true", | |
help="Eval in parallel (multi-GPU, multi-node).", | |
) | |
parser.add_argument( | |
"--no-eval", | |
default=False, | |
action="store_true", | |
help="Training without evaluation.", | |
) | |
parser.add_argument( | |
"--lp-mlp", | |
default=False, | |
action="store_true", | |
help="Linear Probe using MLP layer or not.", | |
) | |
parser.add_argument( | |
"--lp-freeze", | |
default=False, | |
action="store_true", | |
help="Linear Probe using Freeze CLAP or not", | |
) | |
parser.add_argument( | |
"--lp-act", | |
default="None", | |
type=str, | |
help="Options are ['relu','elu','prelu','softmax','sigmoid']", | |
) | |
parser.add_argument( | |
"--lp-loss", type=str, default="bce", help="Loss func of Linear Probe." | |
) | |
parser.add_argument( | |
"--lp-metrics", | |
type=str, | |
default="map,mauc,acc", | |
help="Metrics of Linear Probe.", | |
) | |
parser.add_argument( | |
"--lp-lr", type=float, default=1e-4, help="learning rate of linear probe" | |
) | |
parser.add_argument( | |
"--kappa", | |
type=float, | |
default=0, | |
help="the kappa in the weighted contrastive loss, default is to turn off the weighted contrastive loss", | |
) | |
parser.add_argument( | |
"--data-filling", | |
type=str, | |
default="pad", | |
help="type of data filling when the audio length is shorter than the max length." | |
"Can be one of the following: repeat, repeatpad, pad", | |
) | |
parser.add_argument( | |
"--data-truncating", | |
type=str, | |
default="rand_trunc", | |
help="type of data truncation when the audio length is longer than the max length." | |
"Can be one of the following: rand_trunc, fusion", | |
) | |
parser.add_argument( | |
"--clap-mlploss", | |
default=False, | |
action="store_true", | |
help="Using MLP loss for CLAP model or not", | |
) | |
parser.add_argument( | |
"--wandb-id", | |
type=str, | |
default=None, | |
help="the id of wandb experiment to restore.", | |
) | |
parser.add_argument( | |
"--sleep", type=float, default=0, help="sleep n seconds before start training" | |
) | |
# variable length processing | |
parser.add_argument( | |
"--enable-fusion", | |
default=False, | |
action="store_true", | |
help="Enable feature funsion for variable-length data", | |
) | |
parser.add_argument( | |
"--fusion-type", | |
type=str, | |
default="None", | |
help="Type is among ['channel_map', 'daf_1d','aff_1d','iaff_1d','daf_2d','aff_2d','iaff_2d']", | |
) | |
parser.add_argument( | |
"--mixup", | |
default=False, | |
action="store_true", | |
help="Enable mixup in finetuning training.", | |
) | |
parser.add_argument( | |
"--text-augment-selection", | |
type=str, | |
default=None, | |
help="For selecting levels of augmented text. Type is among ['all', 'augment_only', 'none']", | |
) | |
args = parser.parse_args() | |
# If some params are not passed, we use the default values based on model name. | |
default_params = get_default_params(args.amodel) | |
for name, val in default_params.items(): | |
if getattr(args, name) is None: | |
setattr(args, name, val) | |
return args | |