FluxMusicGUI / app.py
flosstradamus's picture
Update app.py
ca26365 verified
import os
import torch
import gradio as gr
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from scipy.io import wavfile
import glob
import random
import numpy as np
import re
import requests
import time
import gc
# Import necessary functions and classes
from utils import load_t5, load_clap
from train import RF
from constants import build_model
# Global variables to store loaded models and resources
global_model = None
global_t5 = None
global_clap = None
global_vae = None
global_vocoder = None
global_diffusion = None
current_model_name = None
# Set the models directory
MODELS_DIR = os.path.join(os.path.dirname(__file__), "models")
GENERATIONS_DIR = os.path.join(os.path.dirname(__file__), "generations")
def prepare(t5, clip, img, prompt):
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
# Generate text embeddings
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return img, {
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"y": vec.to(img.device),
}
def unload_current_model():
global global_model, current_model_name
if global_model is not None:
del global_model
global_model = None
current_model_name = None
torch.cuda.empty_cache()
gc.collect()
def load_model(model_name, device, model_url=None):
global global_model, current_model_name
unload_current_model()
if model_url:
print(f"Downloading model from URL: {model_url}")
response = requests.get(model_url)
if response.status_code == 200:
model_path = os.path.join(MODELS_DIR, "downloaded_model.pt")
with open(model_path, 'wb') as f:
f.write(response.content)
model_name = "downloaded_model.pt"
else:
return f"Failed to download model from URL: {model_url}"
else:
model_path = os.path.join(MODELS_DIR, model_name)
if not os.path.exists(model_path):
return f"Model file not found: {model_path}"
# Determine model size from filename
if 'musicflow_b' in model_name:
model_size = "base"
elif 'musicflow_g' in model_name:
model_size = "giant"
elif 'musicflow_l' in model_name:
model_size = "large"
elif 'musicflow_s' in model_name:
model_size = "small"
else:
model_size = "base" # Default to base if unrecognized
print(f"Loading {model_size} model: {model_name}")
try:
start_time = time.time()
global_model = build_model(model_size).to(device)
state_dict = torch.load(model_path, map_location=device, weights_only=True)
global_model.load_state_dict(state_dict['ema'], strict=False)
global_model.eval()
global_model.model_path = model_path
current_model_name = model_name
end_time = time.time()
load_time = end_time - start_time
return f"Successfully loaded model: {model_name} in {load_time:.2f} seconds"
except Exception as e:
unload_current_model()
print(f"Error loading model {model_name}: {str(e)}")
return f"Failed to load model: {model_name}. Error: {str(e)}"
def load_resources(device):
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
try:
start_time = time.time()
print("Loading T5 and CLAP models...")
global_t5 = load_t5(device, max_length=256)
global_clap = load_clap(device, max_length=256)
print("Loading VAE and vocoder...")
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
print("Initializing diffusion...")
global_diffusion = RF()
end_time = time.time()
load_time = end_time - start_time
print(f"Base resources loaded successfully in {load_time:.2f} seconds!")
return f"Resources loaded successfully in {load_time:.2f} seconds!"
except Exception as e:
print(f"Error loading resources: {str(e)}")
return f"Failed to load resources. Error: {str(e)}"
def generate_music(prompt, seed, cfg_scale, steps, duration, device, batch_size=1, progress=gr.Progress()):
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
if global_model is None:
return "Please select and load a model first.", None
if global_t5 is None or global_clap is None or global_vae is None or global_vocoder is None or global_diffusion is None:
return "Resources not properly loaded. Please reload the page and try again.", None
if seed == 0:
seed = random.randint(1, 1000000)
print(f"Using seed: {seed}")
torch.manual_seed(seed)
torch.set_grad_enabled(False)
# Ensure we're using CPU if CUDA is not available
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available. Falling back to CPU.")
device = "cpu"
# Calculate the number of segments needed for the desired duration
segment_duration = 10 # Each segment is 10 seconds
num_segments = int(np.ceil(duration / segment_duration))
all_waveforms = []
for i in range(num_segments):
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
# Use the same seed for all segments
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
latent_size = (256, 16)
conds_txt = [prompt]
unconds_txt = ["low quality, gentle"]
L = len(conds_txt)
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
# Implement batching for inference
images = []
for batch_start in range(0, img.shape[0], batch_size):
batch_end = min(batch_start + batch_size, img.shape[0])
batch_img = img[batch_start:batch_end]
batch_conds = {k: v[batch_start:batch_end] for k, v in conds.items()}
batch_unconds = {k: v[batch_start:batch_end] for k, v in unconds.items()}
with torch.no_grad():
batch_images = global_diffusion.sample_with_xps(
global_model, batch_img, conds=batch_conds, null_cond=batch_unconds,
sample_steps=steps, cfg=cfg_scale
)
images.append(batch_images[-1])
images = torch.cat(images, dim=0)
images = rearrange(
images,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=128,
w=8,
ph=2,
pw=2,)
latents = 1 / global_vae.config.scaling_factor * images
mel_spectrogram = global_vae.decode(latents).sample
x_i = mel_spectrogram[0]
if x_i.dim() == 4:
x_i = x_i.squeeze(1)
waveform = global_vocoder(x_i)
waveform = waveform[0].cpu().float().detach().numpy()
all_waveforms.append(waveform)
# Clear some memory after each segment
del images, latents, mel_spectrogram, x_i
torch.cuda.empty_cache()
gc.collect()
# Concatenate all waveforms
final_waveform = np.concatenate(all_waveforms)
# Trim to exact duration
sample_rate = 16000
final_waveform = final_waveform[:int(duration * sample_rate)]
progress(0.9, desc="Saving audio file")
# Create 'generations' folder
os.makedirs(GENERATIONS_DIR, exist_ok=True)
# Generate filename
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
base_filename = f"{prompt_part}_{seed}{model_suffix}"
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
# Check if file exists and add numerical suffix if needed
counter = 1
while os.path.exists(output_path):
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
counter += 1
wavfile.write(output_path, sample_rate, final_waveform)
progress(1.0, desc="Audio generation complete")
return f"Generated with seed: {seed}", output_path
# Get list of .pt files in the models directory
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
model_choices = [os.path.basename(f) for f in model_files]
# Ensure we have at least one model
if not model_choices:
print(f"No models found in the models directory: {MODELS_DIR}")
print("Available files in the directory:")
print(os.listdir(MODELS_DIR))
model_choices = ["No models available"]
# Set default model
default_model = 'musicflow_b.pt' if 'musicflow_b.pt' in model_choices else model_choices[0]
# Set up dark grey theme
theme = gr.themes.Monochrome(
primary_hue="gray",
secondary_hue="gray",
neutral_hue="gray",
radius_size=gr.themes.sizes.radius_sm,
)
# Gradio Interface
with gr.Blocks(theme=theme) as iface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>FluxMusic Generator</h1>
<p>Generate music based on text prompts using FluxMusic model.</p>
<p>Feel free to clone this space and run on GPU locally or on Hugging Face.</p>
</div>
""")
with gr.Row():
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model)
model_url = gr.Textbox(label="Or enter model URL")
device_choice = gr.Radio(["cpu", "cuda"], label="Device", value="cpu")
load_model_button = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", value="No model loaded")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
seed = gr.Number(label="Seed", value=0)
with gr.Row():
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
generate_button = gr.Button("Generate Music")
output_status = gr.Textbox(label="Generation Status")
output_audio = gr.Audio(type="filepath")
def on_load_model_click(model_name, device, url):
# Ensure we're using CPU if CUDA is not available
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available. Falling back to CPU.")
device = "cpu"
resource_status = load_resources(device)
if "Failed" in resource_status:
return resource_status
if url:
result = load_model(None, device, model_url=url)
else:
result = load_model(model_name, device)
return result
load_model_button.click(on_load_model_click, inputs=[model_dropdown, device_choice, model_url], outputs=[model_status])
generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration, device_choice], outputs=[output_status, output_audio])
# Load default model and resources on startup
iface.load(lambda: on_load_model_click(default_model, "cpu", None), inputs=None, outputs=None)
# Launch the interface
iface.launch()