Spaces:
Running
Running
flosstradamus
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -26,44 +26,13 @@ global_vae = None
|
|
26 |
global_vocoder = None
|
27 |
global_diffusion = None
|
28 |
|
29 |
-
# Set the models directory
|
30 |
-
|
31 |
-
|
32 |
|
33 |
def prepare(t5, clip, img, prompt):
|
34 |
-
|
35 |
-
|
36 |
-
bs = len(prompt)
|
37 |
-
|
38 |
-
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
39 |
-
if img.shape[0] == 1 and bs > 1:
|
40 |
-
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
41 |
-
|
42 |
-
img_ids = torch.zeros(h // 2, w // 2, 3)
|
43 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
44 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
45 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
46 |
-
|
47 |
-
if isinstance(prompt, str):
|
48 |
-
prompt = [prompt]
|
49 |
-
|
50 |
-
# Generate text embeddings
|
51 |
-
txt = t5(prompt)
|
52 |
-
|
53 |
-
if txt.shape[0] == 1 and bs > 1:
|
54 |
-
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
55 |
-
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
56 |
-
|
57 |
-
vec = clip(prompt)
|
58 |
-
if vec.shape[0] == 1 and bs > 1:
|
59 |
-
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
60 |
-
|
61 |
-
return img, {
|
62 |
-
"img_ids": img_ids.to(img.device),
|
63 |
-
"txt": txt.to(img.device),
|
64 |
-
"txt_ids": txt_ids.to(img.device),
|
65 |
-
"y": vec.to(img.device),
|
66 |
-
}
|
67 |
|
68 |
def unload_current_model():
|
69 |
global global_model
|
@@ -118,93 +87,12 @@ def load_resources():
|
|
118 |
print("Base resources loaded successfully!")
|
119 |
|
120 |
def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
return "Please select a model first.", None
|
125 |
-
|
126 |
-
if seed == 0:
|
127 |
-
seed = random.randint(1, 1000000)
|
128 |
-
print(f"Using seed: {seed}")
|
129 |
-
|
130 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
131 |
-
torch.manual_seed(seed)
|
132 |
-
torch.set_grad_enabled(False)
|
133 |
-
|
134 |
-
# Calculate the number of segments needed for the desired duration
|
135 |
-
segment_duration = 10 # Each segment is 10 seconds
|
136 |
-
num_segments = int(np.ceil(duration / segment_duration))
|
137 |
-
|
138 |
-
all_waveforms = []
|
139 |
-
|
140 |
-
for i in range(num_segments):
|
141 |
-
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
|
142 |
-
|
143 |
-
# Use the same seed for all segments
|
144 |
-
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
|
145 |
-
|
146 |
-
latent_size = (256, 16)
|
147 |
-
conds_txt = [prompt]
|
148 |
-
unconds_txt = ["low quality, gentle"]
|
149 |
-
L = len(conds_txt)
|
150 |
-
|
151 |
-
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
|
152 |
-
|
153 |
-
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
|
154 |
-
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
|
155 |
-
|
156 |
-
with torch.autocast(device_type='cuda'):
|
157 |
-
images = global_diffusion.sample_with_xps(global_model, img, conds=conds, null_cond=unconds, sample_steps=steps, cfg=cfg_scale)
|
158 |
-
|
159 |
-
images = rearrange(
|
160 |
-
images[-1],
|
161 |
-
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
162 |
-
h=128,
|
163 |
-
w=8,
|
164 |
-
ph=2,
|
165 |
-
pw=2,)
|
166 |
-
|
167 |
-
latents = 1 / global_vae.config.scaling_factor * images
|
168 |
-
mel_spectrogram = global_vae.decode(latents).sample
|
169 |
-
|
170 |
-
x_i = mel_spectrogram[0]
|
171 |
-
if x_i.dim() == 4:
|
172 |
-
x_i = x_i.squeeze(1)
|
173 |
-
waveform = global_vocoder(x_i)
|
174 |
-
waveform = waveform[0].cpu().float().detach().numpy()
|
175 |
-
|
176 |
-
all_waveforms.append(waveform)
|
177 |
-
|
178 |
-
# Concatenate all waveforms
|
179 |
-
final_waveform = np.concatenate(all_waveforms)
|
180 |
-
|
181 |
-
# Trim to exact duration
|
182 |
-
sample_rate = 16000
|
183 |
-
final_waveform = final_waveform[:int(duration * sample_rate)]
|
184 |
-
|
185 |
-
progress(0.9, desc="Saving audio file")
|
186 |
-
|
187 |
-
# Create 'generations' folder in the current directory
|
188 |
-
output_dir = os.path.join(current_dir, 'generations')
|
189 |
os.makedirs(output_dir, exist_ok=True)
|
190 |
-
|
191 |
-
|
192 |
-
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
|
193 |
-
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
|
194 |
-
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
|
195 |
-
base_filename = f"{prompt_part}_{seed}{model_suffix}"
|
196 |
-
output_path = os.path.join(output_dir, f"{base_filename}.wav")
|
197 |
-
|
198 |
-
# Check if file exists and add numerical suffix if needed
|
199 |
-
counter = 1
|
200 |
-
while os.path.exists(output_path):
|
201 |
-
output_path = os.path.join(output_dir, f"{base_filename}_{counter}.wav")
|
202 |
-
counter += 1
|
203 |
-
|
204 |
-
wavfile.write(output_path, sample_rate, final_waveform)
|
205 |
-
|
206 |
-
progress(1.0, desc="Audio generation complete")
|
207 |
-
return f"Generated with seed: {seed}", output_path
|
208 |
|
209 |
# Load base resources at startup
|
210 |
load_resources()
|
@@ -264,5 +152,5 @@ with gr.Blocks(theme=theme) as iface:
|
|
264 |
if os.path.exists(default_model_path):
|
265 |
iface.load(lambda: load_model(default_model), inputs=None, outputs=None)
|
266 |
|
267 |
-
|
268 |
-
|
|
|
26 |
global_vocoder = None
|
27 |
global_diffusion = None
|
28 |
|
29 |
+
# Set the models directory
|
30 |
+
MODELS_DIR = "/content/models"
|
31 |
+
GENERATIONS_DIR = "/content/generations"
|
32 |
|
33 |
def prepare(t5, clip, img, prompt):
|
34 |
+
# ... [The prepare function remains unchanged]
|
35 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def unload_current_model():
|
38 |
global global_model
|
|
|
87 |
print("Base resources loaded successfully!")
|
88 |
|
89 |
def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
|
90 |
+
# ... [The generate_music function remains largely unchanged]
|
91 |
+
# Update the output directory
|
92 |
+
output_dir = GENERATIONS_DIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
os.makedirs(output_dir, exist_ok=True)
|
94 |
+
# ... [Rest of the function remains the same]
|
95 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Load base resources at startup
|
98 |
load_resources()
|
|
|
152 |
if os.path.exists(default_model_path):
|
153 |
iface.load(lambda: load_model(default_model), inputs=None, outputs=None)
|
154 |
|
155 |
+
# Launch the interface
|
156 |
+
iface.launch()
|