Spaces:
Running
Running
flosstradamus
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,10 @@ import numpy as np
|
|
10 |
import re
|
11 |
import requests
|
12 |
from urllib.parse import urlparse
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Import necessary functions and classes
|
15 |
from utils import load_t5, load_clap
|
@@ -39,16 +43,20 @@ def unload_current_model():
|
|
39 |
global_model = None
|
40 |
|
41 |
def download_model(url):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def load_model(url):
|
54 |
global global_model
|
@@ -57,7 +65,7 @@ def load_model(url):
|
|
57 |
|
58 |
unload_current_model()
|
59 |
|
60 |
-
|
61 |
model_path = download_model(url)
|
62 |
|
63 |
# Determine model size from filename
|
@@ -73,17 +81,17 @@ def load_model(url):
|
|
73 |
else:
|
74 |
model_size = "base" # Default to base if unrecognized
|
75 |
|
76 |
-
|
77 |
|
78 |
global_model = build_model(model_size).to(device)
|
79 |
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
|
80 |
global_model.load_state_dict(state_dict['ema'])
|
81 |
global_model.eval()
|
82 |
global_model.model_path = model_path
|
83 |
-
|
84 |
return "Model loaded successfully"
|
85 |
except Exception as e:
|
86 |
-
|
87 |
return f"Error loading model: {str(e)}"
|
88 |
|
89 |
def load_resources():
|
@@ -91,20 +99,20 @@ def load_resources():
|
|
91 |
|
92 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
|
94 |
-
|
95 |
global_t5 = load_t5(device, max_length=256)
|
96 |
global_clap = load_clap(device, max_length=256)
|
97 |
|
98 |
-
|
99 |
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
|
100 |
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
|
101 |
|
102 |
-
|
103 |
global_diffusion = RF()
|
104 |
|
105 |
-
|
106 |
|
107 |
-
def generate_music(prompt, seed, cfg_scale, steps, duration
|
108 |
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
109 |
|
110 |
if global_model is None:
|
@@ -112,85 +120,89 @@ def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progres
|
|
112 |
|
113 |
if seed == 0:
|
114 |
seed = random.randint(1, 1000000)
|
115 |
-
|
116 |
|
117 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
torch.manual_seed(seed)
|
119 |
torch.set_grad_enabled(False)
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
|
191 |
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
194 |
|
195 |
# Load base resources at startup
|
196 |
load_resources()
|
@@ -213,25 +225,29 @@ with gr.Blocks(theme=theme) as iface:
|
|
213 |
</div>
|
214 |
""")
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
|
226 |
-
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
|
227 |
-
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
|
228 |
|
229 |
generate_button = gr.Button("Generate Music")
|
230 |
-
output_status = gr.Textbox(label="Status")
|
231 |
output_audio = gr.Audio(type="filepath")
|
232 |
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
# Launch the interface
|
237 |
iface.launch()
|
|
|
10 |
import re
|
11 |
import requests
|
12 |
from urllib.parse import urlparse
|
13 |
+
import logging
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
# Import necessary functions and classes
|
19 |
from utils import load_t5, load_clap
|
|
|
43 |
global_model = None
|
44 |
|
45 |
def download_model(url):
|
46 |
+
try:
|
47 |
+
response = requests.get(url, stream=True)
|
48 |
+
if response.status_code == 200:
|
49 |
+
filename = os.path.basename(urlparse(url).path)
|
50 |
+
model_path = os.path.join("/tmp", filename)
|
51 |
+
with open(model_path, "wb") as f:
|
52 |
+
for chunk in response.iter_content(chunk_size=8192):
|
53 |
+
f.write(chunk)
|
54 |
+
return model_path
|
55 |
+
else:
|
56 |
+
raise Exception(f"Failed to download model from {url}")
|
57 |
+
except Exception as e:
|
58 |
+
logging.error(f"Error downloading model: {str(e)}")
|
59 |
+
raise
|
60 |
|
61 |
def load_model(url):
|
62 |
global global_model
|
|
|
65 |
|
66 |
unload_current_model()
|
67 |
|
68 |
+
logging.info(f"Downloading model from {url}")
|
69 |
model_path = download_model(url)
|
70 |
|
71 |
# Determine model size from filename
|
|
|
81 |
else:
|
82 |
model_size = "base" # Default to base if unrecognized
|
83 |
|
84 |
+
logging.info(f"Loading {model_size} model: {filename}")
|
85 |
|
86 |
global_model = build_model(model_size).to(device)
|
87 |
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
|
88 |
global_model.load_state_dict(state_dict['ema'])
|
89 |
global_model.eval()
|
90 |
global_model.model_path = model_path
|
91 |
+
logging.info("Model loaded successfully")
|
92 |
return "Model loaded successfully"
|
93 |
except Exception as e:
|
94 |
+
logging.error(f"Error loading model: {str(e)}")
|
95 |
return f"Error loading model: {str(e)}"
|
96 |
|
97 |
def load_resources():
|
|
|
99 |
|
100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
|
102 |
+
logging.info("Loading T5 and CLAP models...")
|
103 |
global_t5 = load_t5(device, max_length=256)
|
104 |
global_clap = load_clap(device, max_length=256)
|
105 |
|
106 |
+
logging.info("Loading VAE and vocoder...")
|
107 |
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
|
108 |
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
|
109 |
|
110 |
+
logging.info("Initializing diffusion...")
|
111 |
global_diffusion = RF()
|
112 |
|
113 |
+
logging.info("Base resources loaded successfully!")
|
114 |
|
115 |
+
def generate_music(prompt, seed, cfg_scale, steps, duration):
|
116 |
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
117 |
|
118 |
if global_model is None:
|
|
|
120 |
|
121 |
if seed == 0:
|
122 |
seed = random.randint(1, 1000000)
|
123 |
+
logging.info(f"Using seed: {seed}")
|
124 |
|
125 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
126 |
torch.manual_seed(seed)
|
127 |
torch.set_grad_enabled(False)
|
128 |
|
129 |
+
try:
|
130 |
+
# Calculate the number of segments needed for the desired duration
|
131 |
+
segment_duration = 10 # Each segment is 10 seconds
|
132 |
+
num_segments = int(np.ceil(duration / segment_duration))
|
133 |
|
134 |
+
all_waveforms = []
|
135 |
|
136 |
+
for i in range(num_segments):
|
137 |
+
logging.info(f"Generating segment {i+1}/{num_segments}")
|
138 |
|
139 |
+
# Use the same seed for all segments
|
140 |
+
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
|
141 |
|
142 |
+
latent_size = (256, 16)
|
143 |
+
conds_txt = [prompt]
|
144 |
+
unconds_txt = ["low quality, gentle"]
|
145 |
+
L = len(conds_txt)
|
146 |
|
147 |
+
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
|
148 |
|
149 |
+
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
|
150 |
+
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
|
151 |
|
152 |
+
with torch.autocast(device_type='cuda'):
|
153 |
+
images = global_diffusion.sample_with_xps(global_model, img, conds=conds, null_cond=unconds, sample_steps=steps, cfg=cfg_scale)
|
154 |
|
155 |
+
images = rearrange(
|
156 |
+
images[-1],
|
157 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
158 |
+
h=128,
|
159 |
+
w=8,
|
160 |
+
ph=2,
|
161 |
+
pw=2,)
|
162 |
|
163 |
+
latents = 1 / global_vae.config.scaling_factor * images
|
164 |
+
mel_spectrogram = global_vae.decode(latents).sample
|
165 |
|
166 |
+
x_i = mel_spectrogram[0]
|
167 |
+
if x_i.dim() == 4:
|
168 |
+
x_i = x_i.squeeze(1)
|
169 |
+
waveform = global_vocoder(x_i)
|
170 |
+
waveform = waveform[0].cpu().float().detach().numpy()
|
171 |
|
172 |
+
all_waveforms.append(waveform)
|
173 |
|
174 |
+
# Concatenate all waveforms
|
175 |
+
final_waveform = np.concatenate(all_waveforms)
|
176 |
|
177 |
+
# Trim to exact duration
|
178 |
+
sample_rate = 16000
|
179 |
+
final_waveform = final_waveform[:int(duration * sample_rate)]
|
180 |
|
181 |
+
logging.info("Saving audio file")
|
182 |
+
|
183 |
+
# Create 'generations' folder
|
184 |
+
os.makedirs(GENERATIONS_DIR, exist_ok=True)
|
185 |
+
|
186 |
+
# Generate filename
|
187 |
+
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
|
188 |
+
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
|
189 |
+
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
|
190 |
+
base_filename = f"{prompt_part}_{seed}{model_suffix}"
|
191 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
|
192 |
+
|
193 |
+
# Check if file exists and add numerical suffix if needed
|
194 |
+
counter = 1
|
195 |
+
while os.path.exists(output_path):
|
196 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
|
197 |
+
counter += 1
|
198 |
|
199 |
+
wavfile.write(output_path, sample_rate, final_waveform)
|
200 |
|
201 |
+
logging.info("Audio generation complete")
|
202 |
+
return f"Generated with seed: {seed}", output_path
|
203 |
+
except Exception as e:
|
204 |
+
logging.error(f"Error generating music: {str(e)}")
|
205 |
+
return f"Error generating music: {str(e)}", None
|
206 |
|
207 |
# Load base resources at startup
|
208 |
load_resources()
|
|
|
225 |
</div>
|
226 |
""")
|
227 |
|
228 |
+
model_url = gr.Textbox(label="Model URL", placeholder="Enter the URL of the model file (.pt)")
|
229 |
+
load_model_button = gr.Button("Load Model")
|
230 |
+
model_status = gr.Textbox(label="Model Status")
|
231 |
|
232 |
+
prompt = gr.Textbox(label="Prompt")
|
233 |
+
seed = gr.Number(label="Seed", value=0)
|
234 |
+
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
|
235 |
+
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
|
236 |
+
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
|
|
|
|
|
|
|
237 |
|
238 |
generate_button = gr.Button("Generate Music")
|
239 |
+
output_status = gr.Textbox(label="Generation Status")
|
240 |
output_audio = gr.Audio(type="filepath")
|
241 |
|
242 |
+
def load_model_wrapper(url):
|
243 |
+
return load_model(url)
|
244 |
+
|
245 |
+
def generate_music_wrapper(prompt, seed, cfg_scale, steps, duration):
|
246 |
+
status, audio_path = generate_music(prompt, seed, cfg_scale, steps, duration)
|
247 |
+
return status, audio_path if audio_path else None
|
248 |
+
|
249 |
+
load_model_button.click(load_model_wrapper, inputs=[model_url], outputs=[model_status])
|
250 |
+
generate_button.click(generate_music_wrapper, inputs=[prompt, seed, cfg_scale, steps, duration], outputs=[output_status, output_audio])
|
251 |
|
252 |
# Launch the interface
|
253 |
iface.launch()
|