Spaces:
Running
Running
File size: 12,853 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import time
import numpy as np
from gym_minigrid.minigrid import *
from gym_minigrid.register import register
from gym_minigrid.social_ai_envs.socialaigrammar import SocialAIGrammar, SocialAIActions, SocialAIActionSpace
import time
from collections import deque
class AppleGuardingNPC(NPC):
"""
A simple NPC that knows who is telling the truth
"""
def __init__(self, color, name, env):
super().__init__(color)
self.name = name
self.env = env
self.npc_dir = 1 # NPC initially looks downward
self.npc_dir = np.random.randint(0, 4) # NPC initially looks downward
self.npc_type = 1 # this will be put into the encoding
self.was_introduced_to = False
self.ate_an_apple = False
self.demo_over = False
self.demo_over_and_position_safe = False
self.apple_unlocked_for_agent = False
self.target_obj = self.env.apple
self.waiting_counter = 0
self.wait_steps = 4
assert self.env.grammar.contains_utterance(self.introduction_statement)
def draw_npc_face(self, c):
assert self.npc_type == 1
assert all(COLORS[self.color] == c)
shapes = []
shapes_colors = []
# Draw eyes
shapes.append(point_in_circle(cx=0.70, cy=0.50, r=0.10))
shapes_colors.append(c)
shapes.append(point_in_circle(cx=0.30, cy=0.50, r=0.10))
shapes_colors.append(c)
# Draw mouth
shapes.append(point_in_rect(0.20, 0.80, 0.72, 0.81))
shapes_colors.append(c)
# Draw eyebrows
shapes.append(point_in_triangle((0.15, 0.20),
(0.85, 0.20),
(0.50, 0.35)))
shapes_colors.append(c)
shapes.append(point_in_triangle((0.30, 0.20),
(0.70, 0.20),
(0.5, 0.35)))
shapes_colors.append((0,0,0))
return shapes, shapes_colors
def can_see_pos(self, obj_pos):
# is the npc seen by the agent
npc_view_obj = self.relative_coords(*obj_pos)
grid, vis_mask = self.gen_obs_grid()
if npc_view_obj is not None:
# in the agent's field of view
ag_view_npc_x, ag_view_npc_y = npc_view_obj
# is it occluded
object_observed = vis_mask[ag_view_npc_x, ag_view_npc_y]
else:
object_observed = False
return object_observed, grid, vis_mask
def step(self, utterance):
reply, info = super().step()
if self.env.hidden_npc:
return reply, info
# reply, action = self.handle_introduction(utterance) # revert this?
reply, action = None, None
NPC_movement = self.env.parameters.get("NPC_movement", "Rotating")
if self.waiting_counter >= self.wait_steps:
self.waiting_counter = 0
if NPC_movement == "Rotating":
action = random.choice([self.rotate_left, self.rotate_right])
elif NPC_movement == "Walking":
action = random.choice([
random.choice([
self.rotate_left, # 25 %
self.rotate_right # 25 %
]),
self.go_forward # 50%
])
else:
raise DeprecationWarning(f"Undefined movement option {NPC_movement}")
else:
self.waiting_counter += 1
if action is not None:
action()
info = {
"prim_action": action.__name__ if action is not None else "no_op",
"utterance": reply or "no_op",
"was_introduced_to": self.was_introduced_to
}
assert (reply or "no_op") in self.list_of_possible_utterances
return reply, info
class AppleStealingEnv(MultiModalMiniGridEnv):
"""
Environment in which the agent is instructed to go to a given object
named using an English text string
"""
def __init__(
self,
size=10,
diminished_reward=True,
step_penalty=False,
knowledgeable=False,
max_steps=80,
hidden_npc=False,
switch_no_light=False,
reward_diminish_factor=0.1,
see_through_walls=False,
egocentric_observation=True,
tagged_apple=False,
):
assert size >= 5
self.empty_symbol = "NA \n"
self.diminished_reward = diminished_reward
self.step_penalty = step_penalty
self.knowledgeable = knowledgeable
self.hidden_npc = hidden_npc
self.hear_yourself = False
self.switch_no_light = switch_no_light
self.grammar = SocialAIGrammar()
self.init_done = False
# parameters - to be set in reset
self.parameters = None
# encoding size should be 5
self.add_npc_direction = True
self.add_npc_point_direction = True
self.add_npc_last_prim_action = True
self.reward_diminish_factor = reward_diminish_factor
self.egocentric_observation = egocentric_observation
self.encoding_size = 3 + 2*bool(not self.egocentric_observation) + bool(self.add_npc_direction) + bool(self.add_npc_point_direction) + bool(self.add_npc_last_prim_action)
super().__init__(
grid_size=size,
max_steps=max_steps,
# Set this to True for maximum speed
see_through_walls=see_through_walls,
actions=SocialAIActions, # primitive actions
action_space=SocialAIActionSpace,
add_npc_direction=self.add_npc_direction,
add_npc_point_direction=self.add_npc_point_direction,
add_npc_last_prim_action=self.add_npc_last_prim_action,
reward_diminish_factor=self.reward_diminish_factor,
)
self.all_npc_utterance_actions = AppleGuardingNPC.get_list_of_possible_utterances()
self.prim_actions_dict = SocialAINPCActionsDict
self.tagged_apple = tagged_apple
def _gen_grid(self, width_, height_):
# Create the grid
self.grid = Grid(width_, height_, nb_obj_dims=self.encoding_size)
# new
self.current_width = self._rand_int(7, width_+1)
self.current_height = self._rand_int(7, height_+1)
# print("Room size: {}x{}".format(self.current_width, self.current_height))
self.wall_x = self.current_width-1
self.wall_y = self.current_height-1
self.version = self.parameters["Version"] if self.parameters else "Asocial"
# Generate the surrounding walls
self.grid.wall_rect(0, 0, self.current_width, self.current_height)
self.add_obstacles()
# apple
self.apple_pos = (self.current_width, self.current_height)
# find the position for the apple/box/generator_platform
self.apple_current_pos = self.find_loc(size=self.apple_pos, reject_agent_pos=True, reject_taken_pos=True)
assert all(self.apple_current_pos < np.array([self.current_width-1, self.current_height-1]))
self.apple = Apple()
self.put_obj_np(self.apple, self.apple_current_pos)
# NPC
color = self._rand_elem(COLOR_NAMES)
self.caretaker = AppleGuardingNPC(color, "Peer", self)
if self.version == "Social":
self.place_obj(self.caretaker, size=(self.current_width, self.current_height))
# Randomize the agent's start position and orientation
self.place_agent(size=(self.current_width, self.current_height))
# Generate the mission string
self.mission = 'undefined'
# Dummy beginning string
# self.beginning_string = "This is what you hear. \n"
self.beginning_string = "Conversation: \n"
self.utterance = self.beginning_string
# utterance appended at the end of each step
self.utterance_history = ""
# used for rendering
self.full_conversation = self.utterance
self.outcome_info = None
def reset(
self, *args, **kwargs
):
# This env must be used inside the parametric env
if not kwargs:
# The only place when kwargs can empty is during the class construction
# reset should be called again before using the env (paramenv does it in its constructor)
assert self.parameters is None
assert not self.init_done
self.init_done = True
obs = super().reset()
return obs
else:
assert self.init_done
self.parameters = dict(kwargs)
assert self.parameters is not None
assert len(self.parameters) > 0
obs = super().reset()
self.agent_ate_the_apple = False
return obs
def step(self, action):
success = False
p_action = action[0]
utterance_action = action[1:]
apple_had_been_eaten = self.apple.eaten
if self.version == "Social":
agent_seen_by_npc, _, _ = self.caretaker.can_see_pos(self.agent_pos)
else:
agent_seen_by_npc = False
# primitive actions
_, reward, done, info = super().step(p_action)
if not self.agent_ate_the_apple:
self.agent_ate_the_apple = self.apple.eaten and not apple_had_been_eaten
# utterances
agent_spoke = not all(np.isnan(utterance_action))
if agent_spoke:
utterance = self.grammar.construct_utterance(utterance_action)
if self.hear_yourself:
self.utterance += "YOU: {} \n".format(utterance)
self.full_conversation += "YOU: {} \n".format(utterance)
else:
utterance = None
if self.version == "Social":
reply, npc_info = self.caretaker.step(utterance)
if reply:
self.utterance += "{}: {} \n".format(self.caretaker.name, reply)
self.full_conversation += "{}: {} \n".format(self.caretaker.name, reply)
else:
npc_info = {
"prim_action": "no_op",
"utterance": "no_op",
"was_introduced_to": False,
}
# aftermath
if p_action == self.actions.done:
done = True
elif self.agent_ate_the_apple:
# check that it is the agent who ate it
assert self.actions(p_action) == self.actions.toggle
assert self.get_cell(*self.front_pos) == self.apple
if agent_seen_by_npc:
reward = 0
success = False
else:
reward = self._reward()
success = True
done = True
# check that it is the agent who ate it
assert self.actions(p_action) == self.actions.toggle
assert self.get_cell(*self.front_pos) == self.apple
# discount
if self.step_penalty:
reward = reward - 0.01
# update obs with NPC movement
obs = self.gen_obs(full_obs=self.full_obs)
# fill observation with text
self.append_existing_utterance_to_history()
obs = self.add_utterance_to_observation(obs)
self.reset_utterance()
# for rendering
if done:
if reward > 0:
self.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
else:
self.outcome_info = "FAILURE: agent got {} reward \n".format(reward)
if self.version == "Social":
# is the npc seen by the agent
ag_view_npc = self.relative_coords(*self.caretaker.cur_pos)
if ag_view_npc is not None:
# in the agent's field of view
ag_view_npc_x, ag_view_npc_y = ag_view_npc
n_dims = obs['image'].shape[-1]
npc_encoding = self.caretaker.encode(n_dims)
# is it occluded
npc_observed = all(obs['image'][ag_view_npc_x, ag_view_npc_y] == npc_encoding)
else:
npc_observed = False
else:
npc_observed = False
info = {**info, **{"NPC_"+k: v for k, v in npc_info.items()}}
info["NPC_observed"] = npc_observed
info["success"] = success
assert success == (reward > 0)
return obs, reward, done, info
def _reward(self):
if self.diminished_reward:
return super()._reward()
else:
return 1.0
def render(self, *args, **kwargs):
obs = super().render(*args, show_dialogue=False, **kwargs)
return obs
register(
id='SocialAI-AppleStealingEnv-v0',
entry_point='gym_minigrid.social_ai_envs:AppleStealingEnv'
)
|