Spaces:
Running
Running
File size: 18,501 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import warnings
from itertools import chain
from gym_minigrid.minigrid import *
from gym_minigrid.parametric_env import *
from gym_minigrid.register import register
from gym_minigrid.social_ai_envs import InformationSeekingEnv, MarblePassEnv, LeverDoorEnv, MarblePushEnv, AppleStealingEnv, ObjectsCollaborationEnv
from gym_minigrid.social_ai_envs.socialaigrammar import SocialAIGrammar, SocialAIActions, SocialAIActionSpace
from gym_minigrid.curriculums import *
import inspect, importlib
# for used for automatic registration of environments
defined_classes = [name for name, _ in inspect.getmembers(importlib.import_module(__name__), inspect.isclass)]
class SocialAIParamEnv(gym.Env):
"""
Meta-Environment containing all other environment (multi-task learning)
"""
def __init__(
self,
size=10,
hidden_npc=False,
see_through_walls=False,
max_steps=80, # before it was 50, 80 is maybe better because of emulation ?
switch_no_light=True,
lever_active_steps=10,
curriculum=None,
expert_curriculum_thresholds=(0.9, 0.8),
expert_curriculum_average_interval=100,
expert_curriculum_minimum_episodes=1000,
n_colors=3,
egocentric_observation=True,
):
if n_colors != 3:
warnings.warn(f"You are ussing {n_colors} instead of the usual 3.")
self.lever_active_steps = lever_active_steps
self.egocentric_observation = egocentric_observation
# Number of cells (width and height) in the agent view
self.agent_view_size = 7
# Number of object dimensions (i.e. number of channels in symbolic image)
# if egocentric is not used absolute coordiantes are added to the encoding
self.encoding_size = 6 + 2*bool(not egocentric_observation)
self.max_steps = max_steps
self.switch_no_light = switch_no_light
# Observations are dictionaries containing an
# encoding of the grid and a textual 'mission' string
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(self.agent_view_size, self.agent_view_size, self.encoding_size),
dtype='uint8'
)
self.observation_space = spaces.Dict({
'image': self.observation_space
})
self.hidden_npc = hidden_npc
# construct the tree
self.parameter_tree = self.construct_tree()
# print tree for logging purposes
# self.parameter_tree.print_tree()
if curriculum in ["intro_seq", "intro_seq_scaf"]:
print("Scaffolding Expert")
self.expert_curriculum_thresholds = expert_curriculum_thresholds
self.expert_curriculum_average_interval = expert_curriculum_average_interval
self.expert_curriculum_minimum_episodes = expert_curriculum_minimum_episodes
self.curriculum = ScaffoldingExpertCurriculum(
phase_thresholds=self.expert_curriculum_thresholds,
average_interval=self.expert_curriculum_average_interval,
minimum_episodes=self.expert_curriculum_minimum_episodes,
type=curriculum,
)
else:
self.curriculum = curriculum
self.current_env = None
self.envs = {}
if self.parameter_tree.root.label == "Env_type":
for env_type in self.parameter_tree.root.children:
if env_type.label == "Information_seeking":
e = InformationSeekingEnv(
max_steps=max_steps,
size=size,
switch_no_light=self.switch_no_light,
see_through_walls=see_through_walls,
n_colors=n_colors,
hidden_npc=self.hidden_npc,
egocentric_observation=self.egocentric_observation,
)
self.envs["Info"] = e
elif env_type.label == "Collaboration":
e = MarblePassEnv(max_steps=max_steps, size=size, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
self.envs["Collaboration_Marble_Pass"] = e
e = LeverDoorEnv(max_steps=max_steps, size=size, lever_active_steps=self.lever_active_steps, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
self.envs["Collaboration_Lever_Door"] = e
e = MarblePushEnv(max_steps=max_steps, size=size, lever_active_steps=self.lever_active_steps, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
self.envs["Collaboration_Marble_Push"] = e
e = ObjectsCollaborationEnv(max_steps=max_steps, size=size, hidden_npc=self.hidden_npc, switch_no_light=self.switch_no_light, egocentric_observation=egocentric_observation)
self.envs["Collaboration_Objects"] = e
elif env_type.label == "AppleStealing":
e = AppleStealingEnv(max_steps=max_steps, size=size, see_through_walls=see_through_walls,
hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
self.envs["OthersPerceptionInference"] = e
else:
raise ValueError(f"Undefined env type {env_type.label}.")
else:
raise ValueError("Env_type should be the root node")
self.all_npc_utterance_actions = sorted(list(set(chain(*[e.all_npc_utterance_actions for e in self.envs.values()]))))
self.grammar = SocialAIGrammar()
# set up the action space
self.action_space = SocialAIActionSpace
self.actions = SocialAIActions
self.npc_prim_actions_dict = SocialAINPCActionsDict
# all envs must have the same grammar
for env in self.envs.values():
assert isinstance(env.grammar, type(self.grammar))
assert env.actions is self.actions
assert env.action_space is self.action_space
# suggestion: encoding size is automatically set to max?
assert env.encoding_size is self.encoding_size
assert env.observation_space == self.observation_space
assert env.prim_actions_dict == self.npc_prim_actions_dict
self.reset()
def draw_tree(self, ignore_labels=[], savedir="viz"):
self.parameter_tree.draw_tree("{}/param_tree_{}".format(savedir, self.spec.id), ignore_labels=ignore_labels)
def print_tree(self):
self.parameter_tree.print_tree()
def construct_tree(self):
tree = ParameterTree()
env_type_nd = tree.add_node("Env_type", type="param")
# Information seeking
inf_seeking_nd = tree.add_node("Information_seeking", parent=env_type_nd, type="value")
prag_fr_compl_nd = tree.add_node("Pragmatic_frame_complexity", parent=inf_seeking_nd, type="param")
tree.add_node("No", parent=prag_fr_compl_nd, type="value")
tree.add_node("Eye_contact", parent=prag_fr_compl_nd, type="value")
tree.add_node("Ask", parent=prag_fr_compl_nd, type="value")
tree.add_node("Ask_Eye_contact", parent=prag_fr_compl_nd, type="value")
# scaffolding
scaffolding_nd = tree.add_node("Scaffolding", parent=inf_seeking_nd, type="param")
scaffolding_N_nd = tree.add_node("N", parent=scaffolding_nd, type="value")
scaffolding_Y_nd = tree.add_node("Y", parent=scaffolding_nd, type="value")
cue_type_nd = tree.add_node("Cue_type", parent=scaffolding_N_nd, type="param")
tree.add_node("Language_Color", parent=cue_type_nd, type="value")
tree.add_node("Language_Feedback", parent=cue_type_nd, type="value")
tree.add_node("Pointing", parent=cue_type_nd, type="value")
tree.add_node("Emulation", parent=cue_type_nd, type="value")
N_bo_nd = tree.add_node("N", parent=inf_seeking_nd, type="param")
tree.add_node("2", parent=N_bo_nd, type="value")
tree.add_node("1", parent=N_bo_nd, type="value")
problem_nd = tree.add_node("Problem", parent=inf_seeking_nd, type="param")
doors_nd = tree.add_node("Doors", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=doors_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=doors_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
boxes_nd = tree.add_node("Boxes", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=boxes_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=boxes_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
switches_nd = tree.add_node("Switches", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=switches_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=switches_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
generators_nd = tree.add_node("Generators", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=generators_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=generators_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
levers_nd = tree.add_node("Levers", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=levers_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=levers_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
doors_nd = tree.add_node("Marble", parent=problem_nd, type="value")
version_nd = tree.add_node("N", parent=doors_nd, type="param")
tree.add_node("2", parent=version_nd, type="value")
peer_nd = tree.add_node("Peer", parent=doors_nd, type="param")
tree.add_node("Y", parent=peer_nd, type="value")
# Collaboration
collab_nd = tree.add_node("Collaboration", parent=env_type_nd, type="value")
colab_type_nd = tree.add_node("Problem", parent=collab_nd, type="param")
problem_nd = tree.add_node("Boxes", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
problem_nd = tree.add_node("Switches", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
problem_nd = tree.add_node("Generators", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
problem_nd = tree.add_node("Marble", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
problem_nd = tree.add_node("MarblePass", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
tree.add_node("Asocial", parent=role_nd, type="value")
problem_nd = tree.add_node("MarblePush", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
problem_nd = tree.add_node("LeverDoor", parent=colab_type_nd, type="value")
role_nd = tree.add_node("Role", parent=problem_nd, type="param")
tree.add_node("A", parent=role_nd, type="value")
tree.add_node("B", parent=role_nd, type="value")
role_nd = tree.add_node("Version", parent=problem_nd, type="param")
tree.add_node("Social", parent=role_nd, type="value")
# Perspective taking
collab_nd = tree.add_node("AppleStealing", parent=env_type_nd, type="value")
role_nd = tree.add_node("Version", parent=collab_nd, type="param")
tree.add_node("Asocial", parent=role_nd, type="value")
social_nd = tree.add_node("Social", parent=role_nd, type="value")
move_nd = tree.add_node("NPC_movement", parent=social_nd, type="param")
tree.add_node("Walking", parent=move_nd, type="value")
tree.add_node("Rotating", parent=move_nd, type="value")
obstacles_nd = tree.add_node("Obstacles", parent=collab_nd, type="param")
tree.add_node("No", parent=obstacles_nd, type="value")
tree.add_node("A_bit", parent=obstacles_nd, type="value")
tree.add_node("Medium", parent=obstacles_nd, type="value")
tree.add_node("A_lot", parent=obstacles_nd, type="value")
return tree
def construct_env_from_params(self, params):
params_labels = {k.label: v.label for k, v in params.items()}
if params_labels['Env_type'] == "Collaboration":
if params_labels["Problem"] == "MarblePass":
env = self.envs["Collaboration_Marble_Pass"]
elif params_labels["Problem"] == "LeverDoor":
env = self.envs["Collaboration_Lever_Door"]
elif params_labels["Problem"] == "MarblePush":
env = self.envs["Collaboration_Marble_Push"]
elif params_labels["Problem"] in ["Boxes", "Switches", "Generators", "Marble"]:
env = self.envs["Collaboration_Objects"]
else:
raise ValueError("params badly defined.")
elif params_labels['Env_type'] == "Information_seeking":
env = self.envs["Info"]
elif params_labels['Env_type'] == "AppleStealing":
env = self.envs["OthersPerceptionInference"]
else:
raise ValueError("params badly defined.")
reset_kwargs = params_labels
return env, reset_kwargs
def reset(self, with_info=False):
# select a new social environment at random, for each new episode
old_window = None
if self.current_env: # a previous env exists, save old window
old_window = self.current_env.window
self.current_params = self.parameter_tree.sample_env_params(ACL=self.curriculum)
self.current_env, reset_kwargs = self.construct_env_from_params(self.current_params)
assert reset_kwargs is not {}
assert reset_kwargs is not None
# print("Sampled parameters:")
# for k, v in reset_kwargs.items():
# print(f'\t{k}:{v}')
if with_info:
obs, info = self.current_env.reset_with_info(**reset_kwargs)
else:
obs = self.current_env.reset(**reset_kwargs)
# carry on window if this env is not the first
if old_window:
self.current_env.window = old_window
if with_info:
return obs, info
else:
return obs
def reset_with_info(self):
return self.reset(with_info=True)
def seed(self, seed=1337):
# Seed the random number generator
for env in self.envs.values():
env.seed(seed)
return [seed]
def set_curriculum_parameters(self, params):
if self.curriculum is not None:
self.curriculum.set_parameters(params)
def step(self, action):
assert self.current_env
assert self.current_env.parameters is not None
obs, reward, done, info = self.current_env.step(action)
info["parameters"] = self.current_params
if done:
if info["success"]:
# self.current_env.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
self.current_env.outcome_info = "SUCCESS\n"
else:
self.current_env.outcome_info = "FAILURE\n"
if self.curriculum is not None:
for k, v in self.curriculum.get_info().items():
info["curriculum_info_"+k] = v
return obs, reward, done, info
@property
def window(self):
assert self.current_env
return self.current_env.window
@window.setter
def window(self, value):
self.current_env.window = value
def render(self, *args, **kwargs):
assert self.current_env
return self.current_env.render(*args, **kwargs)
@property
def step_count(self):
return self.current_env.step_count
def get_mission(self):
return self.current_env.get_mission()
defined_classes_ = [name for name, _ in inspect.getmembers(importlib.import_module(__name__), inspect.isclass)]
envs = list(set(defined_classes_) - set(defined_classes))
assert all([e.endswith("Env") for e in envs])
for env in envs:
register(
id='SocialAI-{}-v1'.format(env),
entry_point='gym_minigrid.social_ai_envs:{}'.format(env)
)
|