File size: 18,501 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import warnings
from itertools import chain
from gym_minigrid.minigrid import *
from gym_minigrid.parametric_env import *
from gym_minigrid.register import register
from gym_minigrid.social_ai_envs import InformationSeekingEnv, MarblePassEnv, LeverDoorEnv, MarblePushEnv, AppleStealingEnv, ObjectsCollaborationEnv
from gym_minigrid.social_ai_envs.socialaigrammar import SocialAIGrammar, SocialAIActions, SocialAIActionSpace
from gym_minigrid.curriculums import *

import inspect, importlib

# for used for automatic registration of environments
defined_classes = [name for name, _ in inspect.getmembers(importlib.import_module(__name__), inspect.isclass)]


class SocialAIParamEnv(gym.Env):
    """
    Meta-Environment containing all other environment (multi-task learning)
    """

    def __init__(
            self,
            size=10,
            hidden_npc=False,
            see_through_walls=False,
            max_steps=80,  # before it was 50, 80 is maybe better because of emulation ?
            switch_no_light=True,
            lever_active_steps=10,
            curriculum=None,
            expert_curriculum_thresholds=(0.9, 0.8),
            expert_curriculum_average_interval=100,
            expert_curriculum_minimum_episodes=1000,
            n_colors=3,
            egocentric_observation=True,
    ):
        if n_colors != 3:
            warnings.warn(f"You are ussing {n_colors} instead of the usual 3.")

        self.lever_active_steps = lever_active_steps
        self.egocentric_observation = egocentric_observation

        # Number of cells (width and height) in the agent view
        self.agent_view_size = 7

        # Number of object dimensions (i.e. number of channels in symbolic image)
        # if egocentric is not used absolute coordiantes are added to the encoding
        self.encoding_size = 6 + 2*bool(not egocentric_observation)

        self.max_steps = max_steps

        self.switch_no_light = switch_no_light

        # Observations are dictionaries containing an
        # encoding of the grid and a textual 'mission' string
        self.observation_space = spaces.Box(
            low=0,
            high=255,
            shape=(self.agent_view_size, self.agent_view_size, self.encoding_size),
            dtype='uint8'
        )
        self.observation_space = spaces.Dict({
            'image': self.observation_space
        })

        self.hidden_npc = hidden_npc

        # construct the tree
        self.parameter_tree = self.construct_tree()

        # print tree for logging purposes
        # self.parameter_tree.print_tree()

        if curriculum in ["intro_seq", "intro_seq_scaf"]:
            print("Scaffolding Expert")
            self.expert_curriculum_thresholds = expert_curriculum_thresholds
            self.expert_curriculum_average_interval = expert_curriculum_average_interval
            self.expert_curriculum_minimum_episodes = expert_curriculum_minimum_episodes
            self.curriculum = ScaffoldingExpertCurriculum(
                phase_thresholds=self.expert_curriculum_thresholds,
                average_interval=self.expert_curriculum_average_interval,
                minimum_episodes=self.expert_curriculum_minimum_episodes,
                type=curriculum,
            )

        else:
            self.curriculum = curriculum

        self.current_env = None

        self.envs = {}

        if self.parameter_tree.root.label == "Env_type":
            for env_type in self.parameter_tree.root.children:
                if env_type.label == "Information_seeking":
                    e = InformationSeekingEnv(
                            max_steps=max_steps,
                            size=size,
                            switch_no_light=self.switch_no_light,
                            see_through_walls=see_through_walls,
                            n_colors=n_colors,
                            hidden_npc=self.hidden_npc,
                            egocentric_observation=self.egocentric_observation,
                    )
                    self.envs["Info"] = e

                elif env_type.label == "Collaboration":
                    e = MarblePassEnv(max_steps=max_steps, size=size, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
                    self.envs["Collaboration_Marble_Pass"] = e

                    e = LeverDoorEnv(max_steps=max_steps, size=size, lever_active_steps=self.lever_active_steps, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
                    self.envs["Collaboration_Lever_Door"] = e

                    e = MarblePushEnv(max_steps=max_steps, size=size, lever_active_steps=self.lever_active_steps, hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
                    self.envs["Collaboration_Marble_Push"] = e

                    e = ObjectsCollaborationEnv(max_steps=max_steps, size=size, hidden_npc=self.hidden_npc, switch_no_light=self.switch_no_light, egocentric_observation=egocentric_observation)
                    self.envs["Collaboration_Objects"] = e

                elif env_type.label == "AppleStealing":
                    e = AppleStealingEnv(max_steps=max_steps, size=size, see_through_walls=see_through_walls,
                                     hidden_npc=self.hidden_npc, egocentric_observation=egocentric_observation)
                    self.envs["OthersPerceptionInference"] = e

                else:
                    raise ValueError(f"Undefined env type {env_type.label}.")

        else:
            raise ValueError("Env_type should be the root node")

        self.all_npc_utterance_actions = sorted(list(set(chain(*[e.all_npc_utterance_actions for e in self.envs.values()]))))

        self.grammar = SocialAIGrammar()

        # set up the action space
        self.action_space = SocialAIActionSpace
        self.actions = SocialAIActions
        self.npc_prim_actions_dict = SocialAINPCActionsDict

        # all envs must have the same grammar
        for env in self.envs.values():
            assert isinstance(env.grammar, type(self.grammar))
            assert env.actions is self.actions
            assert env.action_space is self.action_space

            # suggestion: encoding size is automatically set to max?
            assert env.encoding_size is self.encoding_size
            assert env.observation_space == self.observation_space
            assert env.prim_actions_dict == self.npc_prim_actions_dict

        self.reset()

    def draw_tree(self, ignore_labels=[], savedir="viz"):
        self.parameter_tree.draw_tree("{}/param_tree_{}".format(savedir, self.spec.id), ignore_labels=ignore_labels)

    def print_tree(self):
        self.parameter_tree.print_tree()

    def construct_tree(self):
        tree = ParameterTree()

        env_type_nd = tree.add_node("Env_type", type="param")

        # Information seeking
        inf_seeking_nd = tree.add_node("Information_seeking", parent=env_type_nd, type="value")

        prag_fr_compl_nd = tree.add_node("Pragmatic_frame_complexity", parent=inf_seeking_nd, type="param")
        tree.add_node("No", parent=prag_fr_compl_nd, type="value")
        tree.add_node("Eye_contact", parent=prag_fr_compl_nd, type="value")
        tree.add_node("Ask", parent=prag_fr_compl_nd, type="value")
        tree.add_node("Ask_Eye_contact", parent=prag_fr_compl_nd, type="value")

        # scaffolding
        scaffolding_nd = tree.add_node("Scaffolding", parent=inf_seeking_nd, type="param")
        scaffolding_N_nd = tree.add_node("N", parent=scaffolding_nd, type="value")
        scaffolding_Y_nd = tree.add_node("Y", parent=scaffolding_nd, type="value")

        cue_type_nd = tree.add_node("Cue_type", parent=scaffolding_N_nd, type="param")
        tree.add_node("Language_Color", parent=cue_type_nd, type="value")
        tree.add_node("Language_Feedback", parent=cue_type_nd, type="value")
        tree.add_node("Pointing", parent=cue_type_nd, type="value")
        tree.add_node("Emulation", parent=cue_type_nd, type="value")


        N_bo_nd = tree.add_node("N", parent=inf_seeking_nd, type="param")
        tree.add_node("2", parent=N_bo_nd, type="value")
        tree.add_node("1", parent=N_bo_nd, type="value")

        problem_nd = tree.add_node("Problem", parent=inf_seeking_nd, type="param")

        doors_nd = tree.add_node("Doors", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=doors_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=doors_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        boxes_nd = tree.add_node("Boxes", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=boxes_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=boxes_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        switches_nd = tree.add_node("Switches", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=switches_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=switches_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        generators_nd = tree.add_node("Generators", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=generators_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=generators_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        levers_nd = tree.add_node("Levers", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=levers_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=levers_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        doors_nd = tree.add_node("Marble", parent=problem_nd, type="value")
        version_nd = tree.add_node("N", parent=doors_nd, type="param")
        tree.add_node("2", parent=version_nd, type="value")
        peer_nd = tree.add_node("Peer", parent=doors_nd, type="param")
        tree.add_node("Y", parent=peer_nd, type="value")

        # Collaboration
        collab_nd = tree.add_node("Collaboration", parent=env_type_nd, type="value")

        colab_type_nd = tree.add_node("Problem", parent=collab_nd, type="param")

        problem_nd = tree.add_node("Boxes", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        problem_nd = tree.add_node("Switches", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        problem_nd = tree.add_node("Generators", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        problem_nd = tree.add_node("Marble", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        problem_nd = tree.add_node("MarblePass", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")
        tree.add_node("Asocial", parent=role_nd, type="value")

        problem_nd = tree.add_node("MarblePush", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        problem_nd = tree.add_node("LeverDoor", parent=colab_type_nd, type="value")
        role_nd = tree.add_node("Role", parent=problem_nd, type="param")
        tree.add_node("A", parent=role_nd, type="value")
        tree.add_node("B", parent=role_nd, type="value")
        role_nd = tree.add_node("Version", parent=problem_nd, type="param")
        tree.add_node("Social", parent=role_nd, type="value")

        # Perspective taking
        collab_nd = tree.add_node("AppleStealing", parent=env_type_nd, type="value")

        role_nd = tree.add_node("Version", parent=collab_nd, type="param")
        tree.add_node("Asocial", parent=role_nd, type="value")
        social_nd = tree.add_node("Social", parent=role_nd, type="value")

        move_nd = tree.add_node("NPC_movement", parent=social_nd, type="param")
        tree.add_node("Walking", parent=move_nd, type="value")
        tree.add_node("Rotating", parent=move_nd, type="value")

        obstacles_nd = tree.add_node("Obstacles", parent=collab_nd, type="param")
        tree.add_node("No", parent=obstacles_nd, type="value")
        tree.add_node("A_bit", parent=obstacles_nd, type="value")
        tree.add_node("Medium", parent=obstacles_nd, type="value")
        tree.add_node("A_lot", parent=obstacles_nd, type="value")

        return tree

    def construct_env_from_params(self, params):
        params_labels = {k.label: v.label for k, v in params.items()}
        if params_labels['Env_type'] == "Collaboration":

            if params_labels["Problem"] == "MarblePass":
                env = self.envs["Collaboration_Marble_Pass"]

            elif params_labels["Problem"] == "LeverDoor":
                env = self.envs["Collaboration_Lever_Door"]

            elif params_labels["Problem"] == "MarblePush":
                env = self.envs["Collaboration_Marble_Push"]

            elif params_labels["Problem"] in ["Boxes", "Switches", "Generators", "Marble"]:
                env = self.envs["Collaboration_Objects"]

            else:
                raise ValueError("params badly defined.")

        elif params_labels['Env_type'] == "Information_seeking":
            env = self.envs["Info"]

        elif params_labels['Env_type'] == "AppleStealing":
            env = self.envs["OthersPerceptionInference"]

        else:
            raise ValueError("params badly defined.")

        reset_kwargs = params_labels

        return env, reset_kwargs

    def reset(self, with_info=False):
        # select a new social environment at random, for each new episode

        old_window = None
        if self.current_env:  # a previous env exists, save old window
            old_window = self.current_env.window

        self.current_params = self.parameter_tree.sample_env_params(ACL=self.curriculum)

        self.current_env, reset_kwargs = self.construct_env_from_params(self.current_params)
        assert reset_kwargs is not {}
        assert reset_kwargs is not None

        # print("Sampled parameters:")
        # for k, v in reset_kwargs.items():
        #     print(f'\t{k}:{v}')

        if with_info:
            obs, info = self.current_env.reset_with_info(**reset_kwargs)
        else:
            obs = self.current_env.reset(**reset_kwargs)

        # carry on window if this env is not the first
        if old_window:
            self.current_env.window = old_window

        if with_info:
            return obs, info
        else:
            return obs

    def reset_with_info(self):
        return self.reset(with_info=True)


    def seed(self, seed=1337):
        # Seed the random number generator
        for env in self.envs.values():
            env.seed(seed)

        return [seed]

    def set_curriculum_parameters(self, params):
        if self.curriculum is not None:
            self.curriculum.set_parameters(params)

    def step(self, action):
        assert self.current_env
        assert self.current_env.parameters is not None

        obs, reward, done, info = self.current_env.step(action)

        info["parameters"] = self.current_params

        if done:
            if info["success"]:
                # self.current_env.outcome_info = "SUCCESS: agent got {} reward \n".format(np.round(reward, 1))
                self.current_env.outcome_info = "SUCCESS\n"
            else:
                self.current_env.outcome_info = "FAILURE\n"

        if self.curriculum is not None:
            for k, v in self.curriculum.get_info().items():
                info["curriculum_info_"+k] = v

        return obs, reward, done, info


    @property
    def window(self):
        assert self.current_env
        return self.current_env.window

    @window.setter
    def window(self, value):
        self.current_env.window = value

    def render(self, *args, **kwargs):
        assert self.current_env
        return self.current_env.render(*args, **kwargs)

    @property
    def step_count(self):
        return self.current_env.step_count

    def get_mission(self):
        return self.current_env.get_mission()


defined_classes_ = [name for name, _ in inspect.getmembers(importlib.import_module(__name__), inspect.isclass)]

envs = list(set(defined_classes_) - set(defined_classes))
assert all([e.endswith("Env") for e in envs])

for env in envs:
    register(
        id='SocialAI-{}-v1'.format(env),
        entry_point='gym_minigrid.social_ai_envs:{}'.format(env)
    )