Spaces:
Running
Running
File size: 7,586 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#!/usr/bin/env python3
import time
import argparse
import numpy as np
import gym
import gym_minigrid
from gym_minigrid.wrappers import *
from gym_minigrid.window import Window
from utils import *
from models import MultiModalBaby11ACModel
from collections import Counter
import torch_ac
import json
from termcolor import colored, COLORS
from functools import partial
from tkinter import *
from torch.distributions import Categorical
inter_acl = False
draw_tree = True
def redraw(img):
if not args.agent_view:
img = env.render('rgb_array', tile_size=args.tile_size, mask_unobserved=args.mask_unobserved)
window.show_img(img)
def reset():
# if args.seed != -1:
# env.seed(args.seed)
obs = env.reset()
if hasattr(env, 'mission'):
print('Mission: %s' % env.mission)
window.set_caption(env.mission)
redraw(obs)
tot_bonus = [0]
prev = {
"prev_obs": None,
"prev_info": {},
}
shortened_obj_names = {
'lockablebox' : 'loc_box',
'applegenerator' : 'app_gen',
'generatorplatform': 'gen_pl',
'marbletee' : 'tee',
'remotedoor' : 'rem_door',
}
IDX_TO_OBJECT = {v: shortened_obj_names.get(k, k) for k, v in OBJECT_TO_IDX.items()}
# no duplicates
assert len(IDX_TO_OBJECT) == len(OBJECT_TO_IDX)
IDX_TO_COLOR = {v: k for k, v in COLOR_TO_IDX.items()}
assert len(IDX_TO_COLOR) == len(COLOR_TO_IDX)
# def to_string(enc):
# s = "{:<8} {} {} {} {} {:3} {:3} {}\t".format(
# IDX_TO_OBJECT.get(enc[0], enc[0]), # obj
# *enc[1:3], # x, y
# IDX_TO_COLOR.get(enc[3], enc[3])[:1].upper(), # color
# *enc[4:] #
# )
#
# if IDX_TO_OBJECT.get(enc[0], enc[0]) == "unseen":
# pass
# # s = colored(s, "on_grey")
#
# elif IDX_TO_OBJECT.get(enc[0], enc[0]) != "empty":
# col = IDX_TO_COLOR.get(enc[3], enc[3])
# if col in COLORS:
# s = colored(s, col)
#
# return s
def step(action):
if type(action) == np.ndarray:
obs, reward, done, info = env.step(action)
else:
action = [int(action), np.nan, np.nan]
obs, reward, done, info = env.step(action)
redraw(obs)
if done:
print('done!')
print('Reward=%.2f' % (reward))
print('Exploration_bonus=%.2f' % (tot_bonus[0]))
tot_bonus[0] = 0
with open(output_file, "a") as f:
if reward > 0:
f.write("Success!\n")
f.write("New episode.\n")
reset()
else:
print('\nStep=%s' % (env.step_count))
# print to screen
print("Obs : ", end="")
print("".join(info["descriptions"]), end="")
if obs["utterance_history"] != "Conversation: \n":
print(obs['utterance_history'])
print("Act : ", end="")
# write to file
with open(output_file, "a") as f:
f.write("Obs : ")
f.write("".join(info["descriptions"]))
if obs["utterance_history"] != "Conversation: \n":
f.write(obs['utterance_history'])
# f.write("Your possible actions are:\n")
# f.write("(a) move forward\n")
# f.write("(b) turn left\n")
# f.write("(c) turn right\n")
# f.write("(d) toggle\n")
# f.write("(e) no_op\n")
f.write("Act : ")
print('Full reward (undiminshed)=%.2f' % (reward))
def key_handler(event):
# if hasattr(event.canvas, "_event_loop") and event.canvas._event_loop.isRunning():
# return
print('pressed', event.key)
action_dict = {
"up": "a) move forward",
"left": "b) turn left",
"right": "c) turn right",
" ": "d) toggle",
"shift": "e) no_op",
}
action_dict = {
"up": "move forward",
"left": "turn left",
"right": "turn right",
" ": "toggle",
"shift": "no_op",
}
if event.key in action_dict:
your_action = action_dict[event.key]
with open(output_file, "a") as f:
f.write("{}\n".format(your_action))
if event.key == 'escape':
window.close()
return
if event.key == 'r':
reset()
return
if event.key == 'tab':
step(np.array([np.nan, np.nan, np.nan]))
return
if event.key == 'shift':
step(np.array([np.nan, np.nan, np.nan]))
return
if event.key == 'left':
step(env.actions.left)
return
if event.key == 'right':
step(env.actions.right)
return
if event.key == 'up':
step(env.actions.forward)
return
if event.key == 't':
step(env.actions.speak)
return
if event.key == '1':
step(np.array([np.nan, 0, 0]))
return
if event.key == '2':
step(np.array([np.nan, 0, 1]))
return
if event.key == '3':
step(np.array([np.nan, 1, 0]))
return
if event.key == '4':
step(np.array([np.nan, 1, 1]))
return
if event.key == '5':
step(np.array([np.nan, 2, 2]))
return
if event.key == '6':
step(np.array([np.nan, 1, 2]))
return
if event.key == '7':
step(np.array([np.nan, 2, 1]))
return
if event.key == '8':
step(np.array([np.nan, 1, 3]))
return
if event.key == 'p':
step(np.array([np.nan, 3, 3]))
return
# Spacebar
if event.key == ' ':
step(env.actions.toggle)
return
if event.key == '9':
step(env.actions.pickup)
return
if event.key == '0':
step(env.actions.drop)
return
if event.key == 'enter':
step(env.actions.done)
return
parser = argparse.ArgumentParser()
parser.add_argument(
"--env",
help="gym environment to load",
# default="SocialAI-AsocialBoxInformationSeekingParamEnv-v1",
default="SocialAI-ColorBoxesLLMCSParamEnv-v1",
)
parser.add_argument(
"--seed",
type=int,
help="random seed to generate the environment with",
default=-1
)
parser.add_argument(
"--tile_size",
type=int,
help="size at which to render tiles",
default=32
)
parser.add_argument(
'--agent_view',
default=False,
help="draw the agent sees (partially observable view)",
action='store_true'
)
parser.add_argument(
'--print_grid',
default=False,
help="print the grid with symbols",
action='store_true'
)
parser.add_argument(
'--calc-bonus',
default=False,
help="calculate explo bonus",
action='store_true'
)
parser.add_argument(
'--mask-unobserved',
default=False,
help="mask cells that are not observed by the agent",
action='store_true'
)
parser.add_argument(
'--output-file',
default="./llm_data/in_context_color_test.txt",
help="file where to save episodes",
)
# Put all env related arguments after --env_args, e.g. --env_args nb_foo 1 is_bar True
parser.add_argument("--env-args", nargs='*', default=None)
args = parser.parse_args()
output_file=args.output_file
env = gym.make(args.env, **env_args_str_to_dict(args.env_args))
if draw_tree:
# draw tree
env.parameter_tree.draw_tree(
filename="viz/SocialAIParam/{}_raw_tree".format(args.env),
ignore_labels=["Num_of_colors"],
)
if args.seed >= 0:
env.seed(args.seed)
with open(output_file, "a") as f:
f.write("New episode.\n")
window = Window('gym_minigrid - ' + args.env, figsize=(4, 4))
window.reg_key_handler(key_handler)
env.window = window
# Blocking event loop
window.show(block=True)
|