Spaces:
Running
Running
File size: 38,694 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
import argparse
import random
import warnings
import numpy as np
import time
import datetime
import torch
import gym_minigrid.social_ai_envs
import torch_ac
import sys
import json
import utils
from pathlib import Path
from distutils.dir_util import copy_tree
from utils.env import env_args_str_to_dict
from models import *
# Parse arguments
parser = argparse.ArgumentParser()
## General parameters
parser.add_argument("--algo", required=True,
help="algorithm to use: ppo (REQUIRED)")
parser.add_argument("--env", required=True,
help="name of the environment to train on (REQUIRED)")
parser.add_argument("--model", default=None,
help="name of the model (default: {ENV}_{ALGO}_{TIME})")
parser.add_argument("--seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--log-interval", type=int, default=10,
help="number of updates between two logs (default: 10)")
parser.add_argument("--save-interval", type=int, default=10,
help="number of updates between two saves (default: 10, 0 means no saving)")
parser.add_argument("--procs", type=int, default=16,
help="number of processes (default: 16)")
parser.add_argument("--frames", type=int, default=10**7,
help="number of frames of training (default: 1e7)")
parser.add_argument("--continue-train", default=None,
help="path to the model to finetune", type=str)
parser.add_argument("--finetune-train", default=None,
help="path to the model to finetune", type=str)
parser.add_argument("--compact-save", "-cs", action="store_true", default=False,
help="Keep only last model save")
parser.add_argument("--lr-schedule-end-frames", type=int, default=0,
help="Learning rate will be diminished from --lr to 0 linearly over the period of --lr-schedule-end-frames (default: 0 - no diminsh)")
parser.add_argument("--lr-end", type=float, default=0,
help="the final lr that will be reached at 'lr-schedule-end-frames' (default = 0)")
## Periodic test parameters
parser.add_argument("--test-set-name", required=False,
help="name of the environment to test on, default use the train env", default="SocialAITestSet")
# parser.add_argument("--test-env", required=False,
# help="name of the environment to test on, default use the train env")
# parser.add_argument("--no-test", "-nt", action="store_true", default=False,
# help="don't perform periodic testing")
parser.add_argument("--test-seed", type=int, default=0,
help="random seed (default: 0)")
parser.add_argument("--test-episodes", type=int, default=50,
help="number of episodes to test")
parser.add_argument("--test-interval", type=int, default=-1,
help="number of updates between two tests (default: -1, no testing)")
parser.add_argument("--test-env-args", nargs='*', default="like_train_no_acl")
## Parameters for main algorithm
parser.add_argument("--acl", action="store_true", default=False,
help="use acl")
parser.add_argument("--acl-type", type=str, default=None,
help="acl type")
parser.add_argument("--acl-thresholds", nargs="+", type=float, default=(0.75, 0.75),
help="per phase thresholds for expert CL")
parser.add_argument("--acl-minimum-episodes", type=int, default=1000,
help="Never go to second phase before this.")
parser.add_argument("--acl-average-interval", type=int, default=500,
help="Average the perfromance estimate over this many last episodes")
parser.add_argument("--epochs", type=int, default=4,
help="number of epochs for PPO (default: 4)")
parser.add_argument("--exploration-bonus", action="store_true", default=False,
help="Use a count based exploration bonus")
parser.add_argument("--exploration-bonus-type", nargs="+", default=["lang"],
help="modality on which to use the bonus (lang/grid)")
parser.add_argument("--exploration-bonus-params", nargs="+", type=float, default=(30., 50.),
help="parameters for a count based exploration bonus (C, M)")
parser.add_argument("--exploration-bonus-tanh", nargs="+", type=float, default=None,
help="tanh expl bonus scale, None means no tanh")
parser.add_argument("--expert-exploration-bonus", action="store_true", default=False,
help="Use an expert exploration bonus")
parser.add_argument("--episodic-exploration-bonus", action="store_true", default=False,
help="Use the exploration bonus in a episodic setting")
parser.add_argument("--batch-size", type=int, default=256,
help="batch size for PPO (default: 256)")
parser.add_argument("--frames-per-proc", type=int, default=None,
help="number of frames per process before update (default: 5 for A2C and 128 for PPO)")
parser.add_argument("--discount", type=float, default=0.99,
help="discount factor (default: 0.99)")
parser.add_argument("--lr", type=float, default=0.001,
help="learning rate (default: 0.001)")
parser.add_argument("--gae-lambda", type=float, default=0.99,
help="lambda coefficient in GAE formula (default: 0.99, 1 means no gae)")
parser.add_argument("--entropy-coef", type=float, default=0.01,
help="entropy term coefficient (default: 0.01)")
parser.add_argument("--value-loss-coef", type=float, default=0.5,
help="value loss term coefficient (default: 0.5)")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="maximum norm of gradient (default: 0.5)")
parser.add_argument("--optim-eps", type=float, default=1e-8,
help="Adam and RMSprop optimizer epsilon (default: 1e-8)")
parser.add_argument("--optim-alpha", type=float, default=0.99,
help="RMSprop optimizer alpha (default: 0.99)")
parser.add_argument("--clip-eps", type=float, default=0.2,
help="clipping epsilon for PPO (default: 0.2)")
parser.add_argument("--recurrence", type=int, default=1,
help="number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory.")
parser.add_argument("--text", action="store_true", default=False,
help="add a GRU to the model to handle text input")
parser.add_argument("--dialogue", action="store_true", default=False,
help="add a GRU to the model to handle the history of dialogue input")
parser.add_argument("--current-dialogue-only", action="store_true", default=False,
help="add a GRU to the model to handle only the current dialogue input")
parser.add_argument("--multi-headed-agent", action="store_true", default=False,
help="add a talking head")
parser.add_argument("--babyai11_agent", action="store_true", default=False,
help="use the babyAI 1.1 agent architecture")
parser.add_argument("--multi-headed-babyai11-agent", action="store_true", default=False,
help="use the multi headed babyAI 1.1 agent architecture")
parser.add_argument("--custom-ppo", action="store_true", default=False,
help="use BabyAI original PPO hyperparameters")
parser.add_argument("--custom-ppo-2", action="store_true", default=False,
help="use BabyAI original PPO hyperparameters but with smaller memory")
parser.add_argument("--custom-ppo-3", action="store_true", default=False,
help="use BabyAI original PPO hyperparameters but with no memory")
parser.add_argument("--custom-ppo-rnd", action="store_true", default=False,
help="rnd reconstruct")
parser.add_argument("--custom-ppo-rnd-reference", action="store_true", default=False,
help="rnd reconstruct")
parser.add_argument("--custom-ppo-ride", action="store_true", default=False,
help="rnd reconstruct")
parser.add_argument("--custom-ppo-ride-reference", action="store_true", default=False,
help="rnd reconstruct")
parser.add_argument("--ppo-hp-tuning", action="store_true", default=False,
help="use PPO hyperparameters selected from our HP tuning")
parser.add_argument("--multi-modal-babyai11-agent", action="store_true", default=False,
help="use the multi headed babyAI 1.1 agent architecture")
# ride ref
parser.add_argument("--ride-ref-agent", action="store_true", default=False,
help="Model from the ride paper")
parser.add_argument("--ride-ref-preprocessor", action="store_true", default=False,
help="use ride reference preprocessor (3D images)")
parser.add_argument("--bAI-lang-model", help="lang model type for babyAI models", default="gru")
parser.add_argument("--memory-dim", type=int, help="memory dim (128 is small 2048 is big", default=128)
parser.add_argument("--clipped-rewards", action="store_true", default=False,
help="add a talking head")
parser.add_argument("--intrinsic-reward-epochs", type=int, default=0,
help="")
parser.add_argument("--balance-moa-training", action="store_true", default=False,
help="balance moa training to handle class imbalance.")
parser.add_argument("--moa-memory-dim", type=int, help="memory dim (default=128)", default=128)
# rnd + ride
parser.add_argument("--intrinsic-reward-coef", type=float, default=0.1,
help="")
parser.add_argument("--intrinsic-reward-learning-rate", type=float, default=0.0001,
help="")
parser.add_argument("--intrinsic-reward-momentum", type=float, default=0,
help="")
parser.add_argument("--intrinsic-reward-epsilon", type=float, default=0.01,
help="")
parser.add_argument("--intrinsic-reward-alpha", type=float, default=0.99,
help="")
parser.add_argument("--intrinsic-reward-max-grad-norm", type=float, default=40,
help="")
# rnd + soc_inf
parser.add_argument("--intrinsic-reward-loss-coef", type=float, default=0.1,
help="")
# ride
parser.add_argument("--intrinsic-reward-forward-loss-coef", type=float, default=10,
help="")
parser.add_argument("--intrinsic-reward-inverse-loss-coef", type=float, default=0.1,
help="")
parser.add_argument("--reset-rnd-ride-at-phase", action="store_true", default=False,
help="expert knowledge resets rnd ride at acl phase change")
# babyAI1.1 related
parser.add_argument("--arch", default="original_endpool_res",
help="image embedding architecture")
parser.add_argument("--num-films", type=int, default=2,
help="")
# Put all env related arguments after --env_args, e.g. --env_args nb_foo 1 is_bar True
parser.add_argument("--env-args", nargs='*', default=None)
args = parser.parse_args()
if args.compact_save:
print("Compact save is deprecated. Don't use it. It doesn't do anything now.")
if args.save_interval != args.log_interval:
print(f"save_interval ({args.save_interval}) and log_interval ({args.log_interval}) are not the same. This is not ideal for train continuation.")
if args.seed == -1:
args.seed = np.random.randint(424242)
if args.custom_ppo:
print("babyAI's ppo config")
assert not args.custom_ppo_2
assert not args.custom_ppo_3
args.frames_per_proc = 40
args.lr = 1e-4
args.gae_lambda = 0.99
args.recurrence = 20
args.optim_eps = 1e-05
args.clip_eps = 0.2
args.batch_size = 1280
elif args.custom_ppo_2:
print("babyAI's ppo config with smaller memory")
assert not args.custom_ppo
assert not args.custom_ppo_3
args.frames_per_proc = 40
args.lr = 1e-4
args.gae_lambda = 0.99
args.recurrence = 10
args.optim_eps = 1e-05
args.clip_eps = 0.2
args.batch_size = 1280
elif args.custom_ppo_3:
print("babyAI's ppo config with no memory")
assert not args.custom_ppo
assert not args.custom_ppo_2
args.frames_per_proc = 40
args.lr = 1e-4
args.gae_lambda = 0.99
args.recurrence = 1
args.optim_eps = 1e-05
args.clip_eps = 0.2
args.batch_size = 1280
elif args.custom_ppo_rnd:
print("RND reconstruct")
assert not args.custom_ppo
assert not args.custom_ppo_2
assert not args.custom_ppo_3
args.frames_per_proc = 40
args.lr = 1e-4
args.recurrence = 1
# args.recurrence = 5 # use 5 for SocialAI envs
args.batch_size = 640
args.epochs = 4
# args.optim_eps = 1e-05
# args.entropy_coef = 0.0001
args.clipped_rewards = True
elif args.custom_ppo_ride:
print("RIDE reconstruct")
assert not args.custom_ppo
assert not args.custom_ppo_2
assert not args.custom_ppo_3
assert not args.custom_ppo_rnd
args.frames_per_proc = 40
args.lr = 1e-4
args.recurrence = 1
# args.recurrence = 5 # use 5 for SocialAI envs
args.batch_size = 640
args.epochs = 4
# args.optim_eps = 1e-05
# args.entropy_coef = 0.0005
args.clipped_rewards = True
elif args.custom_ppo_rnd_reference:
print("RND reconstruct")
assert not args.custom_ppo
assert not args.custom_ppo_2
assert not args.custom_ppo_3
args.frames_per_proc = 128 # 128 for PPO
args.lr = 1e-4
args.recurrence = 64
args.gae_lambda = 0.99
args.batch_size = 1280
args.epochs = 4
args.optim_eps = 1e-05
args.clip_eps = 0.2
args.entropy_coef = 0.0001
args.clipped_rewards = True
elif args.custom_ppo_ride_reference:
print("RIDE reference")
assert not args.custom_ppo
assert not args.custom_ppo_2
assert not args.custom_ppo_3
assert not args.custom_ppo_rnd
args.frames_per_proc = 128 # 128 for PPO
args.lr = 1e-4
args.recurrence = 64
args.gae_lambda = 0.99
args.batch_size = 1280
args.epochs = 4
args.optim_eps = 1e-05
args.clip_eps = 0.2
args.entropy_coef = 0.0005
args.clipped_rewards = True
elif args.ppo_hp_tuning:
args.frames_per_proc = 40
args.lr = 1e-4
args.recurrence = 5
args.batch_size = 640
args.epochs = 4
if args.env not in [
"MiniGrid-KeyCorridorS3R3-v0",
"MiniGrid-MultiRoom-N2-S4-v0",
"MiniGrid-MultiRoom-N4-S5-v0",
"MiniGrid-MultiRoom-N7-S4-v0",
"MiniGrid-MultiRoomNoisyTV-N7-S4-v0"
]:
if args.recurrence <= 1:
print("You are using recurrence {} with {} env. This is probably unintentional.".format(args.recurrence, args.env))
# warnings.warn("You are using recurrence {} with {} env. This is probably unintentional.".format(args.recurrence, args.env))
args.mem = args.recurrence > 1
# Set run dir
date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}"
model_name = args.model or default_model_name
model_dir = utils.get_model_dir(model_name)
if Path(model_dir).exists() and args.continue_train is None:
raise ValueError(f"Dir {model_dir} already exists and continue train is None.")
# Load loggers and Tensorboard writer
txt_logger = utils.get_txt_logger(model_dir)
csv_file, csv_logger = utils.get_csv_logger(model_dir)
# Log command and all script arguments
txt_logger.info("{}\n".format(" ".join(sys.argv)))
txt_logger.info("{}\n".format(args))
# Set seed for all randomness sources
utils.seed(args.seed)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
txt_logger.info(f"Device: {device}\n")
# Create env_args dict
env_args = env_args_str_to_dict(args.env_args)
if args.acl:
# expert_acl = "three_stage_expert"
expert_acl = args.acl_type
print(f"Using curriculum: {expert_acl}.")
else:
expert_acl = None
env_args_no_acl = env_args.copy()
env_args["curriculum"] = expert_acl
env_args["expert_curriculum_thresholds"] = args.acl_thresholds
env_args["expert_curriculum_average_interval"] = args.acl_average_interval
env_args["expert_curriculum_minimum_episodes"] = args.acl_minimum_episodes
env_args["egocentric_observation"] = True
# test env args
if not args.test_env_args:
test_env_args = {}
elif args.test_env_args == "like_train_no_acl":
test_env_args = env_args_no_acl
elif args.test_env_args == "like_train":
test_env_args = env_args
else:
test_env_args = env_args_str_to_dict(args.test_env_args)
if "SocialAI-" not in args.env:
env_args = {}
test_env_args = {}
print("train_env_args:", env_args)
print("test_env_args:", test_env_args)
# Load train environments
envs = []
for i in range(args.procs):
envs.append(utils.make_env(args.env, args.seed + 10000 * i, env_args=env_args))
txt_logger.info("Environments loaded\n")
if args.continue_train and args.finetune_train:
raise ValueError(f"Continue path ({args.continue_train}) and finetune path ({args.finetune_train}) can't both be set.")
# Load training status
if args.continue_train:
if args.continue_train == "auto":
status_continue_path = Path(model_dir)
args.continue_train = status_continue_path # just in case
else:
status_continue_path = Path(args.continue_train)
if status_continue_path.is_dir():
# if dir, assume experiment dir so append the seed
# status_continue_path = Path(status_continue_path) / str(args.seed)
status_continue_path = utils.get_status_path(status_continue_path)
else:
if not status_continue_path.is_file():
raise ValueError(f"{status_continue_path} is not a file")
if "status" not in status_continue_path.name:
raise UserWarning(f"{status_continue_path} is does not contain status, is this the correct file? ")
status = utils.load_status(status_continue_path)
txt_logger.info("Training status loaded\n")
txt_logger.info(f"{model_name} continued from {status_continue_path}")
# copy everything from model_dir to backup_dir
assert Path(status_continue_path).is_file()
elif args.finetune_train:
status_finetune_path = Path(args.finetune_train)
if status_finetune_path.is_dir():
# if dir, assume experiment dir so append the seed
status_finetune_seed_path = Path(status_finetune_path) / str(args.seed)
if status_finetune_seed_path.exists():
# if a seed folder exists assume that you use that one
status_finetune_path = utils.get_status_path(status_finetune_seed_path)
else:
# if not assume that no seed folder exists
status_finetune_path = utils.get_status_path(status_finetune_path)
else:
if not status_finetune_path.is_file():
raise ValueError(f"{status_finetune_path} is not dir or a file")
if "status" not in status_finetune_path.name:
raise UserWarning(f"{status_finetune_path} is does not contain status, is this the correct file? ")
status = utils.load_status(status_finetune_path)
txt_logger.info("Training status loaded\n")
txt_logger.info(f"{model_name} finetuning from {status_finetune_path}")
# copy everything from model_dir to backup_dir
assert Path(status_finetune_path).is_file()
# reset parameters for finetuning
status["num_frames"] = 0
status["update"] = 0
del status["optimizer_state"]
del status["lr_scheduler_state"]
del status["env_args"]
else:
status = {"num_frames": 0, "update": 0}
# Parameter sanity checks
if args.dialogue and args.current_dialogue_only:
raise ValueError("Either use dialogue or current-dialogue-only")
if not args.dialogue and not args.current_dialogue_only:
warnings.warn("Not using dialogue")
if args.text:
raise ValueError("Text should not be used. Use dialogue instead.")
# Load observations preprocessor
obs_space, preprocess_obss = utils.get_obss_preprocessor(
obs_space=envs[0].observation_space,
text=args.text,
dialogue_current=args.current_dialogue_only,
dialogue_history=args.dialogue,
custom_image_preprocessor=utils.ride_ref_image_preprocessor if args.ride_ref_preprocessor else None,
custom_image_space_preprocessor=utils.ride_ref_image_space_preprocessor if args.ride_ref_preprocessor else None,
)
if args.continue_train is not None or args.finetune_train is not None:
assert "vocab" in status
preprocess_obss.vocab.load_vocab(status["vocab"])
txt_logger.info("Observations preprocessor loaded")
if args.exploration_bonus:
if args.expert_exploration_bonus:
warnings.warn("You are using expert exploration bonus.")
# Load model
assert sum(map(int, [
args.multi_modal_babyai11_agent,
args.multi_headed_babyai11_agent,
args.babyai11_agent,
args.multi_headed_agent,
])) <= 1
if args.multi_modal_babyai11_agent:
acmodel = MultiModalBaby11ACModel(
obs_space=obs_space,
action_space=envs[0].action_space,
arch=args.arch,
use_text=args.text,
use_dialogue=args.dialogue,
use_current_dialogue_only=args.current_dialogue_only,
use_memory=args.mem,
lang_model=args.bAI_lang_model,
memory_dim=args.memory_dim,
num_films=args.num_films
)
elif args.ride_ref_agent:
assert args.mem
assert not args.text
assert not args.dialogue
acmodel = RefACModel(
obs_space=obs_space,
action_space=envs[0].action_space,
use_memory=args.mem,
use_text=args.text,
use_dialogue=args.dialogue,
input_size=obs_space['image'][-1],
)
if args.current_dialogue_only: raise NotImplementedError("current dialogue only")
else:
acmodel = ACModel(
obs_space=obs_space,
action_space=envs[0].action_space,
use_memory=args.mem,
use_text=args.text,
use_dialogue=args.dialogue,
input_size=obs_space['image'][-1],
)
if args.current_dialogue_only: raise NotImplementedError("current dialogue only")
# if args.continue_train is not None:
# assert "model_state" in status
# acmodel.load_state_dict(status["model_state"])
acmodel.to(device)
txt_logger.info("Model loaded\n")
txt_logger.info("{}\n".format(acmodel))
# Load algo
assert args.algo == "ppo"
algo = torch_ac.PPOAlgo(
envs=envs,
acmodel=acmodel,
device=device,
num_frames_per_proc=args.frames_per_proc,
discount=args.discount,
lr=args.lr,
gae_lambda=args.gae_lambda,
entropy_coef=args.entropy_coef,
value_loss_coef=args.value_loss_coef,
max_grad_norm=args.max_grad_norm,
recurrence=args.recurrence,
adam_eps=args.optim_eps,
clip_eps=args.clip_eps,
epochs=args.epochs,
batch_size=args.batch_size,
preprocess_obss=preprocess_obss,
exploration_bonus=args.exploration_bonus,
exploration_bonus_tanh=args.exploration_bonus_tanh,
exploration_bonus_type=args.exploration_bonus_type,
exploration_bonus_params=args.exploration_bonus_params,
expert_exploration_bonus=args.expert_exploration_bonus,
episodic_exploration_bonus=args.episodic_exploration_bonus,
clipped_rewards=args.clipped_rewards,
# for rnd, ride, and social influence
intrinsic_reward_coef=args.intrinsic_reward_coef,
# for rnd and ride
intrinsic_reward_epochs=args.intrinsic_reward_epochs,
intrinsic_reward_learning_rate=args.intrinsic_reward_learning_rate,
intrinsic_reward_momentum=args.intrinsic_reward_momentum,
intrinsic_reward_epsilon=args.intrinsic_reward_epsilon,
intrinsic_reward_alpha=args.intrinsic_reward_alpha,
intrinsic_reward_max_grad_norm=args.intrinsic_reward_max_grad_norm,
# for rnd and social influence
intrinsic_reward_loss_coef=args.intrinsic_reward_loss_coef,
# for ride
intrinsic_reward_forward_loss_coef=args.intrinsic_reward_forward_loss_coef,
intrinsic_reward_inverse_loss_coef=args.intrinsic_reward_inverse_loss_coef,
# for social influence
balance_moa_training=args.balance_moa_training,
moa_memory_dim=args.moa_memory_dim,
lr_schedule_end_frames=args.lr_schedule_end_frames,
end_lr=args.lr_end,
reset_rnd_ride_at_phase=args.reset_rnd_ride_at_phase,
)
if args.continue_train or args.finetune_train:
algo.load_status_dict(status)
# txt_logger.info(f"Model + Algo loaded from {args.continue_train or args.finetune_train}\n")
if args.continue_train:
txt_logger.info(f"Model + Algo loaded from {status_continue_path} \n")
elif args.finetune_train:
txt_logger.info(f"Model + Algo loaded from {status_finetune_path} \n")
# todo: make nicer
# Set and load test environment
if args.test_set_name:
if args.test_set_name == "SocialAITestSet":
# "SocialAI-AskEyeContactLanguageBoxesInformationSeekingParamEnv-v1",
# "SocialAI-NoIntroPointingBoxesInformationSeekingParamEnv-v1"
test_env_names = [
"SocialAI-TestLanguageColorBoxesInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackBoxesInformationSeekingEnv-v1",
"SocialAI-TestPointingBoxesInformationSeekingEnv-v1",
"SocialAI-TestEmulationBoxesInformationSeekingEnv-v1",
"SocialAI-TestLanguageColorSwitchesInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackSwitchesInformationSeekingEnv-v1",
"SocialAI-TestPointingSwitchesInformationSeekingEnv-v1",
"SocialAI-TestEmulationSwitchesInformationSeekingEnv-v1",
"SocialAI-TestLanguageColorMarbleInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackMarbleInformationSeekingEnv-v1",
"SocialAI-TestPointingMarbleInformationSeekingEnv-v1",
"SocialAI-TestEmulationMarbleInformationSeekingEnv-v1",
"SocialAI-TestLanguageColorGeneratorsInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackGeneratorsInformationSeekingEnv-v1",
"SocialAI-TestPointingGeneratorsInformationSeekingEnv-v1",
"SocialAI-TestEmulationGeneratorsInformationSeekingEnv-v1",
"SocialAI-TestLanguageColorLeversInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackLeversInformationSeekingEnv-v1",
"SocialAI-TestPointingLeversInformationSeekingEnv-v1",
"SocialAI-TestEmulationLeversInformationSeekingEnv-v1",
"SocialAI-TestLanguageColorDoorsInformationSeekingEnv-v1",
"SocialAI-TestLanguageFeedbackDoorsInformationSeekingEnv-v1",
"SocialAI-TestPointingDoorsInformationSeekingEnv-v1",
"SocialAI-TestEmulationDoorsInformationSeekingEnv-v1",
"SocialAI-TestLeverDoorCollaborationEnv-v1",
"SocialAI-TestMarblePushCollaborationEnv-v1",
"SocialAI-TestMarblePassCollaborationEnv-v1",
"SocialAI-TestAppleStealingPerspectiveTakingEnv-v1"
]
elif args.test_set_name == "SocialAIGSTestSet":
test_env_names = [
"SocialAI-GridSearchParamEnv-v1",
"SocialAI-GridSearchPointingParamEnv-v1",
"SocialAI-GridSearchLangColorParamEnv-v1",
"SocialAI-GridSearchLangFeedbackParamEnv-v1",
]
elif args.test_set_name == "SocialAICuesGSTestSet":
test_env_names = [
"SocialAI-CuesGridSearchParamEnv-v1",
"SocialAI-CuesGridSearchPointingParamEnv-v1",
"SocialAI-CuesGridSearchLangColorParamEnv-v1",
"SocialAI-CuesGridSearchLangFeedbackParamEnv-v1",
]
elif args.test_set_name == "BoxesPointingTestSet":
test_env_names = [
"SocialAI-TestPointingBoxesInformationSeekingParamEnv-v1",
]
elif args.test_set_name == "PointingTestSet":
test_env_names = gym_minigrid.social_ai_envs.pointing_test_set
elif args.test_set_name == "LangColorTestSet":
test_env_names = gym_minigrid.social_ai_envs.language_color_test_set
elif args.test_set_name == "LangFeedbackTestSet":
test_env_names = gym_minigrid.social_ai_envs.language_feedback_test_set
# joint attention
elif args.test_set_name == "JAPointingTestSet":
test_env_names = gym_minigrid.social_ai_envs.ja_pointing_test_set
elif args.test_set_name == "JALangColorTestSet":
test_env_names = gym_minigrid.social_ai_envs.ja_language_color_test_set
elif args.test_set_name == "JALangFeedbackTestSet":
test_env_names = gym_minigrid.social_ai_envs.ja_language_feedback_test_set
# emulation
elif args.test_set_name == "DistrEmulationTestSet":
test_env_names = gym_minigrid.social_ai_envs.distr_emulation_test_set
elif args.test_set_name == "NoDistrEmulationTestSet":
test_env_names = gym_minigrid.social_ai_envs.no_distr_emulation_test_set
# formats
elif args.test_set_name == "NFormatsTestSet":
test_env_names = gym_minigrid.social_ai_envs.N_formats_test_set
elif args.test_set_name == "EFormatsTestSet":
test_env_names = gym_minigrid.social_ai_envs.E_formats_test_set
elif args.test_set_name == "AFormatsTestSet":
test_env_names = gym_minigrid.social_ai_envs.A_formats_test_set
elif args.test_set_name == "AEFormatsTestSet":
test_env_names = gym_minigrid.social_ai_envs.AE_formats_test_set
elif args.test_set_name == "RoleReversalTestSet":
test_env_names = gym_minigrid.social_ai_envs.role_reversal_test_set
else:
raise ValueError("Undefined test set name.")
else:
test_env_names = [args.env]
# test_envs = []
testers = []
if args.test_interval > 0:
for test_env_name in test_env_names:
make_env_args = {
"env_key": test_env_name,
"seed": args.test_seed,
"env_args": test_env_args,
}
testers.append(utils.Tester(
make_env_args, args.test_seed, args.test_episodes, model_dir, acmodel, preprocess_obss, device)
)
# test_env = utils.make_env(test_env_name, args.test_seed, env_args=test_env_args)
# test_envs.append(test_env)
# init tester
# testers.append(utils.Tester(test_env, args.test_seed, args.test_episodes, model_dir, acmodel, preprocess_obss, device))
if args.continue_train:
for tester in testers:
tester.load()
# Save config
env_args_ = {k: v.__repr__() if k == "curriculum" else v for k, v in env_args.items()}
test_env_args_ = {k: v.__repr__() if k == "curriculum" else v for k, v in test_env_args.items()}
config_dict = {
"seed": args.seed,
"env": args.env,
"env_args": env_args_,
"test_seed": args.test_seed,
"test_env": args.test_set_name,
"test_env_args": test_env_args_
}
config_dict.update(algo.get_config_dict())
config_dict.update(acmodel.get_config_dict())
with open(model_dir+'/config.json', 'w') as fp:
json.dump(config_dict, fp)
# Train model
num_frames = status["num_frames"]
update = status["update"]
start_time = time.time()
log_add_headers = num_frames == 0 or not args.continue_train
long_term_save_interval = 5000000
if args.continue_train:
# set next long term save interval
next_long_term_save = (1 + num_frames // long_term_save_interval) * long_term_save_interval
else:
next_long_term_save = 0 # for long term logging
while num_frames < args.frames:
# Update model parameters
update_start_time = time.time()
# print("current_seed_pre_train:", np.random.get_state()[1][0])
exps, logs1 = algo.collect_experiences()
logs2 = algo.update_parameters(exps)
logs = {**logs1, **logs2}
update_end_time = time.time()
num_frames += logs["num_frames"]
update += 1
NPC_intro = np.mean(logs["NPC_introduced_to"])
# Print logs
if update % args.log_interval == 0:
fps = logs["num_frames"]/(update_end_time - update_start_time)
duration = int(time.time() - start_time)
return_per_episode = utils.synthesize(logs["return_per_episode"])
extrinsic_return_per_episode = utils.synthesize(logs["extrinsic_return_per_episode"])
exploration_bonus_per_episode = utils.synthesize(logs["exploration_bonus_per_episode"])
success_rate = utils.synthesize(logs["success_rate_per_episode"])
curriculum_max_success_rate = utils.synthesize(logs["curriculum_max_mean_perf_per_episode"])
curriculum_param = utils.synthesize(logs["curriculum_param_per_episode"])
rreturn_per_episode = utils.synthesize(logs["reshaped_return_per_episode"])
num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"])
# intrinsic_reward_perf = utils.synthesize(logs["intr_reward_perf"])
# intrinsic_reward_perf_ = utils.synthesize(logs["intr_reward_perf_"])
intrinsic_reward_perf = logs["intr_reward_perf"]
intrinsic_reward_perf_ = logs["intr_reward_perf_"]
lr_ = logs["lr"]
time_now = int(datetime.datetime.now().strftime("%d%m%Y%H%M%S"))
header = ["update", "frames", "FPS", "duration", "time"]
data = [update, num_frames, fps, duration, time_now]
data_to_print = [update, num_frames, fps, duration, time_now]
header += ["success_rate_" + key for key in success_rate.keys()]
data += success_rate.values()
data_to_print += success_rate.values()
header += ["curriculum_max_success_rate_" + key for key in curriculum_max_success_rate.keys()]
data += curriculum_max_success_rate.values()
if args.acl:
data_to_print += curriculum_max_success_rate.values()
header += ["curriculum_param_" + key for key in curriculum_param.keys()]
data += curriculum_param.values()
if args.acl:
data_to_print += curriculum_param.values()
header += ["extrinsic_return_" + key for key in extrinsic_return_per_episode.keys()]
data += extrinsic_return_per_episode.values()
data_to_print += extrinsic_return_per_episode.values()
# turn on
header += ["exploration_bonus_" + key for key in exploration_bonus_per_episode.keys()]
data += exploration_bonus_per_episode.values()
data_to_print += exploration_bonus_per_episode.values()
header += ["rreturn_" + key for key in rreturn_per_episode.keys()]
data += rreturn_per_episode.values()
data_to_print += rreturn_per_episode.values()
header += ["intrinsic_reward_perf_"]
data += [intrinsic_reward_perf]
# data_to_print += [intrinsic_reward_perf]
header += ["intrinsic_reward_perf2_"]
data += [intrinsic_reward_perf_]
# data_to_print += [intrinsic_reward_perf_]
# header += ["num_frames_" + key for key in num_frames_per_episode.keys()]
# data += num_frames_per_episode.values()
header += ["NPC_intro"]
data += [NPC_intro]
data_to_print += [NPC_intro]
header += ["lr"]
data += [lr_]
data_to_print += [lr_]
# header += ["entropy", "value", "policy_loss", "value_loss", "grad_norm"]
# data += [logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"], logs["grad_norm"]]
# curr_history_len = len(algo.env.envs[0].curriculum.performance_history)
# header += ["curr_history_len"]
# data += [curr_history_len]
txt_logger.info("".join([
"U {} | F {:06} | FPS {:04.0f} | D {} | T {} ",
"| SR:μσmM {:.2f} {:.1f} {:.1f} {:.1f} ",
"| CurMaxSR:μσmM {:.2f} {:.1f} {:.1f} {:.1f} " if args.acl else "",
"| CurPhase:μσmM {:.2f} {:.1f} {:.1f} {:.1f} " if args.acl else "",
"| ExR:μσmM {:.2f} {:.1f} {:.1f} {:.1f} ",
"| InR:μσmM {:.2f} {:.1f} {:.1f} {:.1f} ",
"| rR:μσmM {:.6f} {:.1f} {:.1f} {:.1f} ",
# "| irp:μσmM {:.6f} {:.2f} {:.2f} {:.2f} ",
# "| irp_:μσmM {:.6f} {:.2f} {:.2f} {:.2f} ",
# "| F:μσmM {:.1f} {:.1f} {} {} ",
"| NPC_intro: {:.3f}",
"| lr: {:.5f}",
# "| cur_his_len: {:.5f}" if args.acl else "",
# "| H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}"
]).format(*data_to_print))
header += ["return_" + key for key in return_per_episode.keys()]
data += return_per_episode.values()
if log_add_headers:
csv_logger.writerow(header)
log_add_headers = False
csv_logger.writerow(data)
csv_file.flush()
# Save status
long_term_save = False
if num_frames >= next_long_term_save:
next_long_term_save += long_term_save_interval
long_term_save = True
if (args.save_interval > 0 and update % args.save_interval == 0) or long_term_save:
# continuing train works best when save_interval == log_interval, the csv is cleaner wo redundancies
status = {"num_frames": num_frames, "update": update}
algo_status = algo.get_status_dict()
status = {**status, **algo_status}
if hasattr(preprocess_obss, "vocab"):
status["vocab"] = preprocess_obss.vocab.vocab
status["env_args"] = env_args
if long_term_save:
utils.save_status(status, model_dir, num_frames=num_frames)
utils.save_model(acmodel, model_dir, num_frames=num_frames)
txt_logger.info("Status and Model saved for {} frames".format(num_frames))
else:
utils.save_status(status, model_dir)
utils.save_model(acmodel, model_dir)
txt_logger.info("Status and Model saved")
if args.test_interval > 0 and (update % args.test_interval == 0 or update == 1):
txt_logger.info(f"Testing at update {update}.")
test_success_rates = []
for tester in testers:
mean_success_rate, mean_rewards = tester.test_agent(num_frames)
test_success_rates.append(mean_success_rate)
txt_logger.info(f"\t{tester.envs[0].spec.id} -> {mean_success_rate} (SR)")
tester.dump()
if len(testers):
txt_logger.info(f"Test set SR: {np.array(test_success_rates).mean()}")
# save at the end
status = {"num_frames": num_frames, "update": update}
algo_status = algo.get_status_dict()
status = {**status, **algo_status}
if hasattr(preprocess_obss, "vocab"):
status["vocab"] = preprocess_obss.vocab.vocab
status["env_args"] = env_args
utils.save_status(status, model_dir)
utils.save_model(acmodel, model_dir)
txt_logger.info("Status and Model saved at the end")
|