File size: 47,813 Bytes
be5548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
from abc import ABC, abstractmethod
import numpy as np
import torch

from torch_ac.format import default_preprocess_obss
from torch_ac.utils import DictList, ParallelEnv
from torch_ac.intrinsic_reward_models import *

from collections import Counter


class BaseAlgo(ABC):
    """The base class for RL algorithms."""

    def __init__(self,
                 envs,
                 acmodel,
                 device,
                 num_frames_per_proc,
                 discount,
                 lr,
                 gae_lambda,
                 entropy_coef,
                 value_loss_coef,
                 max_grad_norm,
                 recurrence,
                 preprocess_obss,
                 reshape_reward,
                 exploration_bonus=False,
                 exploration_bonus_params=None,
                 exploration_bonus_tanh=None,
                 expert_exploration_bonus=False,
                 exploration_bonus_type="lang",
                 episodic_exploration_bonus=True,
                 utterance_moa_net=True,  # used for social influence
                 clipped_rewards=False,
                 # default is set to fit RND
                 intrinsic_reward_loss_coef=0.1,  # also used for social influence
                 intrinsic_reward_coef=0.1,  # also used for social influence
                 intrinsic_reward_learning_rate=0.0001,
                 intrinsic_reward_momentum=0,
                 intrinsic_reward_epsilon=0.01,
                 intrinsic_reward_alpha=0.99,
                 intrinsic_reward_max_grad_norm=40,
                 intrinsic_reward_forward_loss_coef=10,
                 intrinsic_reward_inverse_loss_coef=0.1,
                 reset_rnd_ride_at_phase=False,
                 # social_influence
                 balance_moa_training=False,
                 moa_memory_dim=128,
    ):
        """
        Initializes a `BaseAlgo` instance.

        Parameters:
        ----------
        envs : list
            a list of environments that will be run in parallel
        acmodel : torch.Module
            the model
        num_frames_per_proc : int
            the number of frames collected by every process for an update
        discount : float
            the discount for future rewards
        lr : float
            the learning rate for optimizers
        gae_lambda : float
            the lambda coefficient in the GAE formula
            ([Schulman et al., 2015](https://arxiv.org/abs/1506.02438))
        entropy_coef : float
            the weight of the entropy cost in the final objective
        value_loss_coef : float
            the weight of the value loss in the final objective
        max_grad_norm : float
            gradient will be clipped to be at most this value
        recurrence : int
            the number of steps the gradient is propagated back in time
        preprocess_obss : function
            a function that takes observations returned by the environment
            and converts them into the format that the model can handle
        reshape_reward : function
            a function that shapes the reward, takes an
            (observation, action, reward, done) tuple as an input
        """

        # Store parameters

        self.env = ParallelEnv(envs)
        self.acmodel = acmodel
        self.device = device
        self.num_frames_per_proc = num_frames_per_proc
        self.discount = discount
        self.lr = lr
        self.gae_lambda = gae_lambda
        self.entropy_coef = entropy_coef
        self.value_loss_coef = value_loss_coef
        self.max_grad_norm = max_grad_norm
        self.recurrence = recurrence
        self.preprocess_obss = preprocess_obss or default_preprocess_obss
        self.reshape_reward = reshape_reward
        self.exploration_bonus = exploration_bonus
        self.expert_exploration_bonus = expert_exploration_bonus
        self.exploration_bonus_type = exploration_bonus_type
        self.episodic_exploration_bonus = episodic_exploration_bonus
        self.clipped_rewards = clipped_rewards
        self.update_epoch = 0
        self.utterance_moa_net = utterance_moa_net  # todo: as parameter

        self.reset_rnd_ride_at_phase = reset_rnd_ride_at_phase
        self.was_reset = False

        # Control parameters

        assert self.acmodel.recurrent or self.recurrence == 1
        assert self.num_frames_per_proc % self.recurrence == 0

        # Configure acmodel

        self.acmodel.to(self.device)
        self.acmodel.train()

        # Store helpers values

        self.num_procs = len(envs)
        self.num_frames = self.num_frames_per_proc * self.num_procs

        # Initialize experience values

        shape = (self.num_frames_per_proc, self.num_procs)

        self.obs = self.env.reset()
        self.obss = [None]*(shape[0])

        self.info = [{}]*(shape[0])
        self.infos = [None]*(shape[0])
        if self.acmodel.recurrent:
            self.memory = torch.zeros(shape[1], self.acmodel.memory_size, device=self.device)
            self.memories = torch.zeros(*shape, self.acmodel.memory_size, device=self.device)
        self.mask = torch.ones(shape[1], device=self.device)
        self.masks = torch.zeros(*shape, device=self.device)
        self.next_masks = torch.zeros(*shape, device=self.device)

        self.values = torch.zeros(*shape, device=self.device)
        self.next_values = torch.zeros(*shape, device=self.device)
        self.rewards = torch.zeros(*shape, device=self.device)
        self.extrinsic_rewards = torch.zeros(*shape, device=self.device)
        self.advantages = torch.zeros(*shape, device=self.device)

        # as_shape = self.env.envs[0].action_space.shape
        as_shape = self.acmodel.model_raw_action_space.shape
        self.actions = torch.zeros(*(shape+as_shape), device=self.device, dtype=torch.int)
        self.log_probs = torch.zeros(*(shape+as_shape), device=self.device)

        # Initialize log values

        self.log_episode_return = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_extrinsic_return = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_exploration_bonus = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_success_rate = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_curriculum_mean_perf = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_reshaped_return = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_num_frames = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_mission_string_observed = torch.zeros(self.num_procs, device=self.device)
        self.log_episode_NPC_introduced_to = np.zeros(self.num_procs).astype(bool)
        self.log_episode_curriculum_param = torch.zeros(self.num_procs, device=self.device)

        self.intrinsic_reward_loss_coef = intrinsic_reward_loss_coef
        self.intrinsic_reward_coef = intrinsic_reward_coef
        self.intrinsic_reward_learning_rate = intrinsic_reward_learning_rate
        self.intrinsic_reward_momentum = intrinsic_reward_momentum
        self.intrinsic_reward_epsilon = intrinsic_reward_epsilon
        self.intrinsic_reward_alpha = intrinsic_reward_alpha
        self.intrinsic_reward_max_grad_norm = intrinsic_reward_max_grad_norm
        self.intrinsic_reward_forward_loss_coef = intrinsic_reward_forward_loss_coef
        self.intrinsic_reward_inverse_loss_coef = intrinsic_reward_inverse_loss_coef
        self.balance_moa_training = balance_moa_training
        self.moa_memory_dim = moa_memory_dim

        self.log_done_counter = 0
        self.log_return = [0] * self.num_procs
        self.log_extrinsic_return = [0] * self.num_procs
        self.log_exploration_bonus = [0] * self.num_procs
        self.log_success_rate = [0] * self.num_procs
        self.log_curriculum_max_mean_perf = [0] * self.num_procs
        self.log_curriculum_param = [0] * self.num_procs
        self.log_reshaped_return = [0] * self.num_procs
        self.log_num_frames = [0] * self.num_procs
        self.log_mission_string_observed = [0] * self.num_procs
        self.log_NPC_introduced_to = [False] * self.num_procs
        self.images_counter = [Counter() for _ in range(self.num_procs)]

        if self.exploration_bonus:
            self.visitation_counter = {}
            self.exploration_bonus_params = {}
            self.exploration_bonus_tanh = {}

            for i, bonus_type in enumerate(self.exploration_bonus_type):
                if bonus_type == "rnd":
                    assert not self.episodic_exploration_bonus
                    self.init_rnd_networks_and_optimizer()

                elif bonus_type == "ride":
                    self.init_ride_networks_and_optimizer()


                elif bonus_type == "soc_inf":

                    # npc actions
                    self.fn_name_to_npc_prim_act = self.env.envs[0].npc_prim_actions_dict

                    self.num_npc_prim_actions = len(self.fn_name_to_npc_prim_act)

                    self.npc_utterance_to_id = {a: i for i, a in enumerate(self.env.envs[0].all_npc_utterance_actions)}
                    self.num_npc_utterance_actions = len(self.npc_utterance_to_id)

                    if self.utterance_moa_net:
                        self.num_npc_all_actions = self.num_npc_prim_actions * self.num_npc_utterance_actions
                    else:
                        self.num_npc_all_actions = self.num_npc_prim_actions

                    # construct possible agent_action's list
                    self.all_possible_agent_actions, self.act_to_ind_dict = self.construct_all_possible_agent_actions()
                    self.agent_actions_tiled_all = None

                    im_shape = self.env.observation_space['image'].shape

                    embedding_size = self.acmodel.semi_memory_size

                    input_size = embedding_size \
                                    + self.num_npc_prim_actions \
                                    + self.acmodel.model_raw_action_space.nvec[0] \
                                    + self.acmodel.model_raw_action_space.nvec[2] \
                                    + self.acmodel.model_raw_action_space.nvec[3]

                    if self.utterance_moa_net:
                        input_size += self.num_npc_utterance_actions  # todo: feed as index or as text?

                    self.moa_net = LSTMMoaNet(
                        input_size=input_size,
                        num_npc_prim_actions=self.num_npc_prim_actions,
                        num_npc_utterance_actions=self.num_npc_utterance_actions if self.utterance_moa_net else None,
                        acmodel=self.acmodel,
                        memory_dim=self.moa_memory_dim
                    ).to(device=self.device)

                    # memory
                    assert shape == (self.num_frames_per_proc, self.num_procs)
                    self.moa_memory = torch.zeros(shape[1], self.moa_net.memory_size, device=self.device)
                    self.moa_memories = torch.zeros(*shape, self.moa_net.memory_size, device=self.device)

                elif bonus_type in ["cell", "grid", "lang"]:
                    if self.episodic_exploration_bonus:
                        self.visitation_counter[bonus_type] = [Counter() for _ in range(self.num_procs)]
                    else:
                        self.visitation_counter[bonus_type] = Counter()

                    if exploration_bonus_params:
                        self.exploration_bonus_params[bonus_type] = exploration_bonus_params[2*i:2*i+2]
                    else:
                        self.exploration_bonus_params[bonus_type] = (100, 50.)

                    if exploration_bonus_tanh is None:
                        self.exploration_bonus_tanh[bonus_type] = None
                    else:
                        self.exploration_bonus_tanh[bonus_type] = exploration_bonus_tanh[i]
                else:
                    raise ValueError(f"bonus type: {bonus_type} unknown.")

    def load_status_dict(self, status):

        self.acmodel.load_state_dict(status["model_state"])

        if hasattr(self.env, "curriculum") and self.env.curriculum is not None:
            self.env.curriculum.load_status_dict(status)
            self.env.broadcast_curriculum_parameters(self.env.curriculum.get_parameters())

        # self.optimizer.load_state_dict(status["optimizer_state"])

        if self.exploration_bonus:
            for i, bonus_type in enumerate(self.exploration_bonus_type):

                if bonus_type == "rnd":
                    self.random_target_network.load_state_dict(status["random_target_network"])
                    self.predictor_network.load_state_dict(status["predictor_network"])
                    self.intrinsic_reward_optimizer.load_state_dict(status["intrinsic_reward_optimizer"])

                elif bonus_type == "ride":
                    self.forward_dynamics_model.load_state_dict(status["forward_dynamics_model"])
                    self.inverse_dynamics_model.load_state_dict(status["inverse_dynamics_model"])
                    self.state_embedding_model.load_state_dict(status["state_embedding_model"])

                    self.state_embedding_optimizer.load_state_dict(status["state_embedding_optimizer"])
                    self.inverse_dynamics_optimizer.load_state_dict(status["inverse_dynamics_optimizer"])
                    self.forward_dynamics_optimizer.load_state_dict(status["forward_dynamics_optimizer"])

                elif bonus_type == "soc_inf":
                    self.moa_net.load_state_dict(status["moa_net"])

    def get_status_dict(self):

        algo_status_dict = {
            "model_state": self.acmodel.state_dict(),
        }

        if hasattr(self.env, "curriculum") and self.env.curriculum is not None:
            algo_status_dict = {
                **algo_status_dict,
                **self.env.curriculum.get_status_dict()
            }

        if self.exploration_bonus:
            for i, bonus_type in enumerate(self.exploration_bonus_type):

                if bonus_type == "rnd":
                    algo_status_dict["random_target_network"] = self.random_target_network.state_dict()
                    algo_status_dict["predictor_network"] = self.predictor_network.state_dict()
                    algo_status_dict["intrinsic_reward_optimizer"] = self.intrinsic_reward_optimizer.state_dict()

                elif bonus_type == "ride":
                    algo_status_dict["forward_dynamics_model"] = self.forward_dynamics_model.state_dict()
                    algo_status_dict["inverse_dynamics_model"] = self.inverse_dynamics_model.state_dict()
                    algo_status_dict["state_embedding_model"] = self.state_embedding_model.state_dict()

                    algo_status_dict["state_embedding_optimizer"] = self.state_embedding_optimizer.state_dict()
                    algo_status_dict["inverse_dynamics_optimizer"] = self.inverse_dynamics_optimizer.state_dict()
                    algo_status_dict["forward_dynamics_optimizer"] = self.forward_dynamics_optimizer.state_dict()

                elif bonus_type == "soc_inf":
                    algo_status_dict["moa_net"] = self.moa_net.state_dict()

        return algo_status_dict

    def construct_all_possible_agent_actions(self):

        if self.acmodel is None:
            raise ValueError("This should be called after the model has been set")

        # add non-speaking actions

        # a non-speaking actions look like (?, 0, 0, 0)
        # the last two zeros would normally mean the frst template and first word, but here they are to be
        # ignored because of the second 0 (which means to not speak)
        non_speaking_action_subspace = (self.acmodel.model_raw_action_space.nvec[0], 1, 1, 1)
        non_speaking_actions = np.array(list(np.ndindex(non_speaking_action_subspace)))

        # add speaking actions
        speaking_action_subspace = (
            self.acmodel.model_raw_action_space.nvec[0],
            1,  # one action,
            self.acmodel.model_raw_action_space.nvec[2],
            self.acmodel.model_raw_action_space.nvec[3],
        )

        speaking_actions = np.array(list(np.ndindex(speaking_action_subspace)))
        speaking_actions = self.acmodel.no_speak_to_speak_action(speaking_actions)

        # all actions
        all_possible_agent_actions = np.concatenate([non_speaking_actions, speaking_actions])

        # create the action -> index dict
        act_to_ind_dict = {tuple(act): ind for ind, act in enumerate(all_possible_agent_actions)}

        # map other non-speaking actions to the (?, 0, 0, 0), ex. (3, 0, 4, 12) -> (3, 0, 0, 0)
        other_non_speaking_action_subspace = (
            self.acmodel.model_raw_action_space.nvec[0],
            1,
            self.acmodel.model_raw_action_space.nvec[2],
            self.acmodel.model_raw_action_space.nvec[3]
        )
        for action in np.ndindex(other_non_speaking_action_subspace):
            assert action[1] == 0  # non-speaking
            act_to_ind_dict[tuple(action)] = act_to_ind_dict[(action[0], 0, 0, 0)]

        return all_possible_agent_actions, act_to_ind_dict

    def step_to_n_frames(self, step):
        return step * self.num_frames_per_proc * self.num_procs

    def calculate_exploration_bonus(self, obs=None, done=None, prev_obs=None, info=None, prev_info=None, agent_actions=None, dist=None,
                                    i_step=None, embeddings=None):

        def state_hashes(observation, exploration_bonus_type):
            if exploration_bonus_type == "lang":
                hashes = [observation['utterance']]
                assert len(hashes) == 1
            elif exploration_bonus_type == "cell":
                # for all new cells
                im = observation["image"]
                hashes = np.unique(im.reshape(-1, im.shape[-1]), axis=0)
                hashes = np.apply_along_axis(lambda a: a.data.tobytes(), 1, hashes)

            elif exploration_bonus_type == "grid":
                # for seeing new grid configurations
                im = observation["image"]
                hashes = [im.data.tobytes()]
                assert len(hashes) == 1
            else:
                raise ValueError(f"Unknown exploration bonus type {bonus_type}")

            return hashes

        total_bonus = [0]*len(obs)
        for bonus_type in self.exploration_bonus_type:
            if bonus_type == "rnd":
                # -- [unroll_length x batch_size x height x width x channels] == [1, n_proc, 7, 7, 4]
                batch = torch.tensor(np.array([[o['image'] for o in obs]])).to(self.device)

                with torch.no_grad():
                    random_embedding = self.random_target_network(batch).reshape(len(obs), 128)
                    predicted_embedding = self.predictor_network(batch).reshape(len(obs), 128)
                    intrinsic_rewards = torch.norm(predicted_embedding.detach() - random_embedding.detach(), dim=1, p=2)
                    intrinsic_reward_coef = self.intrinsic_reward_coef
                    intrinsic_rewards *= intrinsic_reward_coef

                    # is this the best way? should we somehow extract the next_state?
                    bonus = [0.0 if d else float(r) for d, r in zip(done, intrinsic_rewards)]

            elif bonus_type == "ride":
                with torch.no_grad():
                    _obs = torch.tensor(np.array([[o['image'] for o in prev_obs]])).to(self.device)
                    _next_obs = torch.tensor(np.array([[o['image'] for o in obs]])).to(self.device)

                    # counts - number of times a state was seen during the SAME episode -> can be computed here
                    count_rewards = torch.tensor([1/np.sqrt(self.images_counter[p_i][np.array(o.to("cpu")).tobytes()]) for p_i, o in enumerate(_next_obs[0])]).to(self.device)
                    assert not any(torch.isinf(count_rewards))

                    state_emb = self.state_embedding_model(_obs.to(device=self.device)).reshape(len(obs), 128)
                    next_state_emb = self.state_embedding_model(_next_obs.to(device=self.device)).reshape(len(obs), 128)

                    control_rewards = torch.norm(next_state_emb - state_emb, dim=1, p=2)

                    intrinsic_rewards = self.intrinsic_reward_coef*(count_rewards * control_rewards)

                    # is this the best way? should we somehow extract the next_state?
                    bonus = [0.0 if d else float(r) for d, r in zip(done, intrinsic_rewards)]

            elif bonus_type == "soc_inf":
                if prev_info == [{}] * len(prev_info):
                    # this is the first step, info is not given during reset

                    # first step in the episode no influence can be estimated as there is no previous action
                    # todo: padd with zeros, and estimate anyway?
                    bonus = [0.0 for _ in done]
                else:
                    # social influence
                    n_procs = len(obs)

                    _prev_NPC_prim_actions = torch.tensor(
                        [self.fn_name_to_npc_prim_act[o["NPC_prim_action"]] for o in prev_info]
                    ).to(self.device)

                    # todo: what is the best way to feed utt action?
                    _prev_NPC_utt_actions = torch.tensor(
                        [self.npc_utterance_to_id[o["NPC_utterance"]] for o in prev_info]
                    ).to(self.device)

                    # new
                    # calculate counterfactuals
                    npc_previous_prim_actions_all = _prev_NPC_prim_actions.repeat(len(self.all_possible_agent_actions)) # [A_ag*n_procs, ...]
                    npc_previous_utt_actions_all = _prev_NPC_utt_actions.repeat(len(self.all_possible_agent_actions)) # [A_ag*n_procs, ...]

                    # agent actions tiled
                    if self.agent_actions_tiled_all is not None:
                        agent_actions_tiled_all = self.agent_actions_tiled_all

                    else:
                        # only first time, we can't do it in init because we need len(im_obs)
                        agent_actions_tiled_all = []
                        for pot_agent_action in self.all_possible_agent_actions:
                            pot_agent_action_tiled = torch.from_numpy(np.tile(pot_agent_action, (n_procs, 1))) # [n_procs,...]
                            agent_actions_tiled_all.append(pot_agent_action_tiled.to(self.device))

                        agent_actions_tiled_all = torch.concat(agent_actions_tiled_all)  # [A_ag*n_procs,....]

                        self.agent_actions_tiled_all = agent_actions_tiled_all

                    with torch.no_grad():
                        # todo: move this tiling above?
                        masked_memory = self.moa_memory * self.mask.unsqueeze(1)
                        masked_memory_tiled_all = masked_memory.repeat([len(self.all_possible_agent_actions), 1])
                        embedding_tiled_all = embeddings.repeat([len(self.all_possible_agent_actions), 1])

                        # use current memory for every action

                        counterfactuals_logits, moa_memory = self.moa_net(
                            embeddings=embedding_tiled_all,
                            # observations=observations_all,
                            npc_previous_prim_actions=npc_previous_prim_actions_all,
                            npc_previous_utterance_actions=npc_previous_utt_actions_all if self.utterance_moa_net else None,
                            agent_actions=agent_actions_tiled_all,
                            memory=masked_memory_tiled_all
                        )  # logits : [A_ag * n_procs, A_npc]

                        counterfactuals_logits = counterfactuals_logits.reshape(
                            [len(self.all_possible_agent_actions), n_procs, self.num_npc_all_actions])

                        counterfactuals_logits = counterfactuals_logits.swapaxes(0, 1) # [n_procs, A_ag, A_npc]

                    assert counterfactuals_logits.shape == (len(obs), len(self.all_possible_agent_actions), self.num_npc_all_actions)

                    # compute npc logits p(A_npc|A_ag, s)

                    # note: ex (5,0,5,2) is mapped to (5,0,0,0), todo: is this ok everywhere?
                    agent_action_indices = [self.act_to_ind_dict[tuple(act.cpu().numpy())] for act in agent_actions]
                    # ~ p(a_npc| a_ag, ...)

                    predicted_logits = torch.stack([ctr[ind] for ctr, ind in zip(counterfactuals_logits, agent_action_indices)])

                    assert i_step is not None
                    self.moa_memories[i_step] = self.moa_memory

                    # only save for the actions actually taken
                    self.moa_memory = moa_memory[agent_action_indices]

                    assert predicted_logits.shape == (len(obs), self.num_npc_all_actions)

                    predicted_probs = torch.softmax(predicted_logits, dim=1)  # use exp_softmax or something?


                    # compute marginal npc logits p(A_npc|s) = sum( p(A_NPC|A_ag,s), for every A_ag )
                    # compute agent logits for all possible agent actions
                    per_non_speaking_action_log_probs = dist[0].logits + dist[1].logits[:, :1]

                    per_speaking_action_log_probs = []
                    for p in range(n_procs):

                        log_probs_for_proc_p = [d.logits[p].cpu().numpy() for d in dist]

                        # speaking actions
                        speaking_log_probs = log_probs_for_proc_p
                        speaking_log_probs[1] = speaking_log_probs[1][1:]  # only the speak action

                        # sum everybody with everybody
                        out = np.add.outer(speaking_log_probs[0], speaking_log_probs[1]).reshape(-1)
                        out = np.add.outer(out, speaking_log_probs[2]).reshape(-1)
                        out = np.add.outer(out, speaking_log_probs[3]).reshape(-1)
                        per_speaking_action_log_probs_proc_p = out

                        per_speaking_action_log_probs.append(per_speaking_action_log_probs_proc_p)

                    per_speaking_action_log_probs = np.stack(per_speaking_action_log_probs)

                    agent_log_probs = torch.concat([
                        per_non_speaking_action_log_probs,
                        torch.tensor(per_speaking_action_log_probs).to(device=self.device),
                    ], dim=1)

                    # assert
                    for p in range(n_procs):
                        log_probs_for_proc_p = [d.logits[p].cpu().numpy() for d in dist]

                        assert torch.abs(agent_log_probs[p][self.act_to_ind_dict[(0, 1, 3, 1)]] - sum([p[a] for p, a in list(zip(log_probs_for_proc_p, (0, 1, 3, 1)))])) < 1e-5
                        assert torch.abs(agent_log_probs[p][self.act_to_ind_dict[(0, 1, 1, 10)]] - sum([p[a] for p, a in list(zip(log_probs_for_proc_p, (0, 1, 1, 10)))])) < 1e-5


                    agent_probs = agent_log_probs.exp()

                    counterfactuals_probs = counterfactuals_logits.softmax(dim=-1)  # [n_procs, A_ag, A_npc]
                    counterfactuals_perm = counterfactuals_probs.permute(0, 2, 1)  # [n_procs, A_npc, A_agent]

                    # compute marginal distributions
                    marginals = (counterfactuals_perm * agent_probs[:, None, :]).sum(-1)

                    # this already sums to one, so the following normalization is not needed
                    marginal_probs = marginals / marginals.sum(1, keepdims=True)  # sum over npc_actions
                    assert marginal_probs.shape == (n_procs, self.num_npc_all_actions)  # [batch, A_npc]

                    KL_loss = (predicted_probs * (predicted_probs.log() - marginal_probs.log())).sum(axis=-1)


                    intrinsic_rewards = self.intrinsic_reward_coef * KL_loss

                    # is the NPC observed in the image that is fed as input in this step
                    # (returned by the previous step() call )
                    NPC_observed = torch.tensor([pi["NPC_observed"] for pi in prev_info]).to(self.device)

                    intrinsic_rewards = intrinsic_rewards * NPC_observed

                    bonus = [0.0 if d else float(r) for d, r in zip(done, intrinsic_rewards)]

            elif bonus_type in ["cell", "grid", "lang"]:
                C, M = self.exploration_bonus_params[bonus_type]
                C_ = C / self.num_frames_per_proc

                if self.expert_exploration_bonus:
                    # expert
                    raise DeprecationWarning("Deprecated exploration bonus type")

                elif self.episodic_exploration_bonus:

                    hashes = [state_hashes(o, bonus_type) for o in obs]
                    bonus = [
                        0 if d else  # no bonus if done
                        np.sum([
                            C_ / ((self.visitation_counter[bonus_type][i_p][h] + 1) ** M) for h in hs
                        ])
                        for i_p, (hs, d) in enumerate(zip(hashes, done))
                    ]

                    # update the counters
                    for i_p, (o, d, hs) in enumerate(zip(obs, done, hashes)):
                        if not d:
                            for h in hs:
                                self.visitation_counter[bonus_type][i_p][h] += 1

                else:
                    raise DeprecationWarning("Use episodic exploration bonus.")
                    # non-episodic exploration bonus

                    bonus = [
                        0 if d else  # no bonus if done
                        np.sum([
                        C_ / ((self.visitation_counter[bonus_type][h] + 1) ** M) for h in state_hashes(o. bonus_type)
                        ]) for o, d in zip(obs, done)
                    ]

                    # update the counters
                    for o, d in zip(obs, done):
                        if not d:
                            for h in state_hashes(o, self.exploration_bonus_type):
                                self.visitation_counter[bonus_type][h] += 1

                if self.exploration_bonus_tanh[bonus_type] is not None:
                    bonus = [np.tanh(b)*self.exploration_bonus_tanh[bonus_type] for b in bonus]
            else:
                raise ValueError(f"Unknown exploration bonus type {bonus_type}")

            assert len(total_bonus) == len(bonus)
            total_bonus = [tb+b for tb, b in zip(total_bonus, bonus)]

        return total_bonus

    def collect_experiences(self):
        """Collects rollouts and computes advantages.

        Runs several environments concurrently. The next actions are computed
        in a batch mode for all environments at the same time. The rollouts
        and advantages from all environments are concatenated together.

        Returns
        -------
        exps : DictList
            Contains actions, rewards, advantages etc as attributes.
            Each attribute, e.g. `exps.reward` has a shape
            (self.num_frames_per_proc * num_envs, ...). k-th block
            of consecutive `self.num_frames_per_proc` frames contains
            data obtained from the k-th environment. Be careful not to mix
            data from different environments!
        logs : dict
            Useful stats about the training process, including the average
            reward, policy loss, value loss, etc.
        """

        for i_step in range(self.num_frames_per_proc):
            # Do one agent-environment interaction
            preprocessed_obs = self.preprocess_obss(self.obs, device=self.device)
            with torch.no_grad():

                if self.acmodel.recurrent:
                    dist, value, memory, policy_embedding = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1), return_embeddings=True)
                else:
                    dist, value, policy_embedding = self.acmodel(preprocessed_obs, return_embeddings=True)

            action = self.acmodel.sample_action(dist)

            obs, reward, done, info = self.env.step(
                self.acmodel.construct_final_action(
                    action.cpu().numpy()
                )
            )

            if hasattr(self.env, "curriculum") and self.env.curriculum is not None:
                curriculum_params = self.env.curriculum.update_parameters({
                    "obs": obs,
                    "reward": reward,
                    "done": done,
                    "info": info,
                })
                # broadcast new parameters to all parallel environments
                self.env.broadcast_curriculum_parameters(curriculum_params)

                if self.reset_rnd_ride_at_phase and curriculum_params['phase'] == 2 and not self.was_reset:
                    self.was_reset = True
                    assert not self.episodic_exploration_bonus

                    for i, bonus_type in enumerate(self.exploration_bonus_type):
                        if bonus_type == "rnd":
                            self.init_rnd_networks_and_optimizer()

                        elif bonus_type == "ride":
                            self.init_ride_networks_and_optimizer()

            for p_i, o in enumerate(obs):
                self.images_counter[p_i][o['image'].tobytes()] += 1

            extrinsic_reward = reward
            exploration_bonus = (0,) * len(reward)

            if self.exploration_bonus:
                bonus = self.calculate_exploration_bonus(
                    obs=obs, done=done, prev_obs=self.obs, info=info, prev_info=self.info, agent_actions=action, dist=dist,
                    i_step=i_step, embeddings=policy_embedding,
                )
                exploration_bonus = bonus
                reward = [r + b for r, b in zip(reward, bonus)]

            if self.clipped_rewards:
                # this should not be used with classic count-based rewards as they often,
                # when combined with extr. rew go past 1.0
                reward = list(map(float, torch.clamp(torch.tensor(reward), -1, 1)))

            # Update experiences values
            self.obss[i_step] = self.obs
            self.obs = obs
            self.infos[i_step] = info  # info of this step is the current info
            self.info = info  # save as previous info

            if self.acmodel.recurrent:
                self.memories[i_step] = self.memory
                self.memory = memory
            self.masks[i_step] = self.mask
            self.mask = 1 - torch.tensor(done, device=self.device, dtype=torch.float)

            self.actions[i_step] = action
            self.values[i_step] = value

            if self.reshape_reward is not None:
                self.rewards[i_step] = torch.tensor([
                    self.reshape_reward(obs_, action_, reward_, done_)
                    for obs_, action_, reward_, done_ in zip(obs, action, reward, done)
                ], device=self.device)
            else:
                self.rewards[i_step] = torch.tensor(reward, device=self.device)

            self.log_probs[i_step] = self.acmodel.calculate_log_probs(dist, action)

            # Update log values

            self.log_episode_return += torch.tensor(reward, device=self.device, dtype=torch.float)
            self.log_episode_extrinsic_return += torch.tensor(extrinsic_reward, device=self.device, dtype=torch.float)
            self.log_episode_exploration_bonus += torch.tensor(exploration_bonus, device=self.device, dtype=torch.float)
            self.log_episode_success_rate = torch.tensor([i["success"] for i in info]).float().to(self.device)
            self.log_episode_curriculum_mean_perf = torch.tensor([i.get("curriculum_info_max_mean_perf", 0) for i in info]).float().to(self.device)
            self.log_episode_reshaped_return += self.rewards[i_step]
            self.log_episode_num_frames += torch.ones(self.num_procs, device=self.device)
            self.log_episode_curriculum_param = torch.tensor([i.get("curriculum_info_param", 0.0) for i in info]).float().to(self.device)
            # self.log_episode_curriculum_param = torch.tensor([i.get("curriculum_info_mean_perf", 0.0) for i in info]).float().to(self.device)
            assert self.log_episode_curriculum_param.var() == 0

            log_episode_NPC_introduced_to_current = np.array([i.get('NPC_was_introduced_to', False) for i in info])
            assert all((self.log_episode_NPC_introduced_to | log_episode_NPC_introduced_to_current) == log_episode_NPC_introduced_to_current)

            self.log_episode_NPC_introduced_to = self.log_episode_NPC_introduced_to | log_episode_NPC_introduced_to_current

            self.log_episode_mission_string_observed += torch.tensor([
                float(m in o.get("utterance", ''))
                for m, o in zip(self.env.get_mission(), self.obs)
            ], device=self.device, dtype=torch.float)

            for p, done_ in enumerate(done):
                if done_:
                    self.log_mission_string_observed.append(
                        torch.clamp(self.log_episode_mission_string_observed[p], 0, 1).item()
                    )
                    self.log_done_counter += 1
                    self.log_return.append(self.log_episode_return[p].item())
                    self.log_extrinsic_return.append(self.log_episode_extrinsic_return[p].item())
                    self.log_exploration_bonus.append(self.log_episode_exploration_bonus[p].item())
                    self.log_success_rate.append(self.log_episode_success_rate[p].item())
                    self.log_curriculum_max_mean_perf.append(self.log_episode_curriculum_mean_perf[p].item())
                    self.log_reshaped_return.append(self.log_episode_reshaped_return[p].item())
                    self.log_num_frames.append(self.log_episode_num_frames[p].item())
                    self.log_curriculum_param.append(self.log_episode_curriculum_param[p].item())
                    if self.episodic_exploration_bonus:
                        for v in self.visitation_counter.values():
                            v[p] = Counter()
                    self.images_counter[p] = Counter()
                    self.log_NPC_introduced_to.append(self.log_episode_NPC_introduced_to[p])
                    # print("log history:", self.log_success_rate)
                    # print("log history len:", len(self.log_success_rate)-16)

            self.log_episode_mission_string_observed *= self.mask
            self.log_episode_return *= self.mask
            self.log_episode_extrinsic_return *= self.mask
            self.log_episode_exploration_bonus *= self.mask
            self.log_episode_success_rate *= self.mask
            self.log_episode_curriculum_mean_perf *= self.mask
            self.log_episode_reshaped_return *= self.mask
            self.log_episode_num_frames *= self.mask
            self.log_episode_NPC_introduced_to *= self.mask.cpu().numpy().astype(bool)
            self.log_episode_curriculum_param *= self.mask
        # Add advantage and return to experiences

        preprocessed_obs = self.preprocess_obss(self.obs, device=self.device)
        with torch.no_grad():
            if self.acmodel.recurrent:
                _, next_value, _ = self.acmodel(preprocessed_obs, self.memory * self.mask.unsqueeze(1))
            else:
                _, next_value = self.acmodel(preprocessed_obs)
        for f in reversed(range(self.num_frames_per_proc)):
            next_mask = self.masks[f+1] if f < self.num_frames_per_proc - 1 else self.mask
            next_value = self.values[f+1] if f < self.num_frames_per_proc - 1 else next_value
            next_advantage = self.advantages[f+1] if f < self.num_frames_per_proc - 1 else 0

            self.next_masks[f] = next_mask
            self.next_values[f] = next_value

            delta = self.rewards[f] + self.discount * next_value * next_mask - self.values[f]
            self.advantages[f] = delta + self.discount * self.gae_lambda * next_advantage * next_mask

        # Define experiences:
        #   the whole experience is the concatenation of the experience
        #   of each process.
        # In comments below:
        #   - T is self.num_frames_per_proc,
        #   - P is self.num_procs,
        #   - D is the dimensionality.

        exps = DictList()
        exps.obs = [self.obss[f][p]
                    for p in range(self.num_procs)
                    for f in range(self.num_frames_per_proc)]

        exps.infos = np.array([self.infos[f][p]
                    for p in range(self.num_procs)
                    for f in range(self.num_frames_per_proc)])

        # obs: (p1 (f1,f2,f3) ; p2 (f1,f2,f3); p3 (f1,f2,f3)

        if self.acmodel.recurrent:
            # T x P x D -> P x T x D -> (P * T) x D
            exps.memory = self.memories.transpose(0, 1).reshape(-1, *self.memories.shape[2:])
            # T x P -> P x T -> (P * T) x 1
            exps.mask = self.masks.transpose(0, 1).reshape(-1).unsqueeze(1)
            exps.next_mask = self.next_masks.transpose(0, 1).reshape(-1).unsqueeze(1)

        if self.exploration_bonus and "soc_inf" in self.exploration_bonus_type:
            exps.moa_memory = self.moa_memories.transpose(0, 1).reshape(-1, *self.moa_memories.shape[2:])

        # for all tensors below, T x P -> P x T -> P * T

        exps.action = self.actions.transpose(0, 1).reshape((-1, self.actions.shape[-1]))
        exps.log_prob = self.log_probs.transpose(0, 1).reshape((-1, self.actions.shape[-1]))

        exps.value = self.values.transpose(0, 1).reshape(-1)
        exps.next_value = self.next_values.transpose(0, 1).reshape(-1)
        exps.reward = self.rewards.transpose(0, 1).reshape(-1)
        exps.advantage = self.advantages.transpose(0, 1).reshape(-1)
        exps.returnn = exps.value + exps.advantage

        # Preprocess experiences

        exps.obs = self.preprocess_obss(exps.obs, device=self.device)

        # Log some values

        keep = max(self.log_done_counter, self.num_procs)

        flat_actions = self.actions.reshape(-1, self.actions.shape[-1])
        action_modalities = {
            "action_modality_{}".format(m): flat_actions[:, m].cpu().numpy() for m in range(self.actions.shape[-1])
        }

        if not self.exploration_bonus:
            assert self.log_return == self.log_extrinsic_return

        logs = {
            "return_per_episode": self.log_return[-keep:],
            "mission_string_observed": self.log_mission_string_observed[-keep:],
            "extrinsic_return_per_episode": self.log_extrinsic_return[-keep:],
            "exploration_bonus_per_episode": self.log_exploration_bonus[-keep:],
            "success_rate_per_episode": self.log_success_rate[-keep:],
            "curriculum_max_mean_perf_per_episode": self.log_curriculum_max_mean_perf[-keep:],
            "curriculum_param_per_episode": self.log_curriculum_param[-keep:],
            "reshaped_return_per_episode": self.log_reshaped_return[-keep:],
            "num_frames_per_episode": self.log_num_frames[-keep:],
            "num_frames": self.num_frames,
            "NPC_introduced_to": self.log_NPC_introduced_to[-keep:],
            **action_modalities
        }

        self.log_done_counter = 0
        self.log_return = self.log_return[-self.num_procs:]
        self.log_extrinsic_return = self.log_extrinsic_return[-self.num_procs:]
        self.log_exploration_bonus = self.log_exploration_bonus[-self.num_procs:]
        self.log_reshaped_return = self.log_reshaped_return[-self.num_procs:]
        self.log_num_frames = self.log_num_frames[-self.num_procs:]

        return exps, logs

    def compute_advantages_and_returnn(self, exps):
        """
        This function can be used for algorithms which reuse old data (not online RL) to
        recompute non episodic intrinsic rewards on old experience.
        This method is not used in PPO training.

        Example usage from update_parameters
        advs, retnn = self.compute_advantages_and_returnn(exps)

        # if you want to do a sanity check
        assert torch.equal(exps.advantage, advs)
        assert torch.equal(exps.returnn, retnn)

        exps.advantages, exps.returnn = advs, retnn
        """
        shape = (self.num_frames_per_proc, self.num_procs)
        advs = torch.zeros(*shape, device=self.device)

        rewards = exps.reward.reshape(self.num_procs, self.num_frames_per_proc).transpose(0, 1)
        values = exps.value.reshape(self.num_procs, self.num_frames_per_proc).transpose(0, 1)
        next_values = exps.next_value.reshape(self.num_procs, self.num_frames_per_proc).transpose(0, 1)
        next_masks = exps.next_mask.reshape(self.num_procs, self.num_frames_per_proc).transpose(0, 1)

        for f in reversed(range(self.num_frames_per_proc)):
            next_advantage = advs[f+1] if f < self.num_frames_per_proc - 1 else 0

            delta = rewards[f] + self.discount * next_values[f] * next_masks[f] - values[f]
            advs[f] = delta + self.discount * self.gae_lambda * next_advantage * next_masks[f]

        advantage = advs.transpose(0, 1).reshape(-1)
        returnn = exps.value + advantage
        return advantage, returnn

    @abstractmethod
    def update_parameters(self):
        pass

    def init_rnd_networks_and_optimizer(self):
        self.random_target_network = MinigridStateEmbeddingNet(self.env.observation_space['image'].shape).to(
            device=self.device)
        self.predictor_network = MinigridStateEmbeddingNet(self.env.observation_space['image'].shape).to(device=self.device)

        self.intrinsic_reward_optimizer = torch.optim.RMSprop(
            self.predictor_network.parameters(),
            lr=self.intrinsic_reward_learning_rate,
            momentum=self.intrinsic_reward_momentum,
            eps=self.intrinsic_reward_epsilon,
            alpha=self.intrinsic_reward_alpha,
        )

    def init_ride_networks_and_optimizer(self):
        self.state_embedding_model = MinigridStateEmbeddingNet(self.env.observation_space['image'].shape).to(
            device=self.device)
        # linquistic actions
        # n_actions = self.acmodel.model_raw_action_space.nvec.prod

        # we only use primitive actions for ride
        n_actions = self.acmodel.model_raw_action_space.nvec[0]

        self.forward_dynamics_model = MinigridForwardDynamicsNet(n_actions).to(device=self.device)
        self.inverse_dynamics_model = MinigridInverseDynamicsNet(n_actions).to(device=self.device)

        self.state_embedding_optimizer = torch.optim.RMSprop(
            self.state_embedding_model.parameters(),
            lr=self.intrinsic_reward_learning_rate,
            momentum=self.intrinsic_reward_momentum,
            eps=self.intrinsic_reward_epsilon,
            alpha=self.intrinsic_reward_alpha)

        self.inverse_dynamics_optimizer = torch.optim.RMSprop(
            self.inverse_dynamics_model.parameters(),
            lr=self.intrinsic_reward_learning_rate,
            momentum=self.intrinsic_reward_momentum,
            eps=self.intrinsic_reward_epsilon,
            alpha=self.intrinsic_reward_alpha)

        self.forward_dynamics_optimizer = torch.optim.RMSprop(
            self.forward_dynamics_model.parameters(),
            lr=self.intrinsic_reward_learning_rate,
            momentum=self.intrinsic_reward_momentum,
            eps=self.intrinsic_reward_epsilon,
            alpha=self.intrinsic_reward_alpha)