Spaces:
Running
Running
File size: 21,610 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import numpy
import torch
import torch.nn.functional as F
from torch_ac.intrinsic_reward_models import compute_forward_dynamics_loss, compute_inverse_dynamics_loss
from sklearn.metrics import f1_score
from torch_ac.algos.base import BaseAlgo
def compute_balance_mask(target, n_classes):
if target.float().var() == 0:
# all the same class, don't train at all
return torch.zeros_like(target).detach()
# compute the balance mask
per_class_n = torch.bincount(target, minlength=n_classes)
# number of times the least common class (that appeared) appeared
n_for_each_class = per_class_n[torch.nonzero(per_class_n)].min()
# undersample other classes
per_class_n = n_for_each_class # sample each class that many times
balanced_indexes_ = []
for c in range(n_classes):
c_indexes = torch.where(target == c)[0]
if len(c_indexes) == 0:
continue
# c_sampled_indexes = c_indexes[torch.randint(len(c_indexes), (per_class_n,))]
c_sampled_indexes = c_indexes[torch.randperm(len(c_indexes))[:per_class_n]]
balanced_indexes_.append(c_sampled_indexes)
balanced_indexes = torch.concat(balanced_indexes_)
balance_mask = torch.zeros_like(target)
balance_mask[balanced_indexes] = 1.0
return balance_mask.detach()
class PPOAlgo(BaseAlgo):
"""The Proximal Policy Optimization algorithm
([Schulman et al., 2015](https://arxiv.org/abs/1707.06347))."""
def __init__(self, envs, acmodel, device=None, num_frames_per_proc=None, discount=0.99, lr=0.001, gae_lambda=0.95,
entropy_coef=0.01, value_loss_coef=0.5, max_grad_norm=0.5, recurrence=4,
adam_eps=1e-5, clip_eps=0.2, epochs=4, batch_size=256, preprocess_obss=None,
reshape_reward=None, exploration_bonus=False, exploration_bonus_params=None,
expert_exploration_bonus=False, episodic_exploration_bonus=True, exploration_bonus_type="lang",
exploration_bonus_tanh=None, clipped_rewards=False, intrinsic_reward_epochs=0,
# default is set to fit RND
intrinsic_reward_coef=0.1,
intrinsic_reward_learning_rate=0.0001,
intrinsic_reward_momentum=0,
intrinsic_reward_epsilon=0.01,
intrinsic_reward_alpha=0.99,
intrinsic_reward_max_grad_norm=40,
intrinsic_reward_loss_coef=0.1,
intrinsic_reward_forward_loss_coef=10,
intrinsic_reward_inverse_loss_coef=0.1,
reset_rnd_ride_at_phase=False,
balance_moa_training=False,
moa_memory_dim=128,
schedule_lr=False,
lr_schedule_end_frames=0,
end_lr=0.0,
):
num_frames_per_proc = num_frames_per_proc or 128
# save config
self.config = locals()
super().__init__(
envs=envs,
acmodel=acmodel,
device=device,
num_frames_per_proc=num_frames_per_proc,
discount=discount,
lr=lr,
gae_lambda=gae_lambda,
entropy_coef=entropy_coef,
value_loss_coef=value_loss_coef,
max_grad_norm=max_grad_norm,
recurrence=recurrence,
preprocess_obss=preprocess_obss,
reshape_reward=reshape_reward,
exploration_bonus=exploration_bonus,
expert_exploration_bonus=expert_exploration_bonus,
episodic_exploration_bonus=episodic_exploration_bonus,
exploration_bonus_params=exploration_bonus_params,
exploration_bonus_tanh=exploration_bonus_tanh,
exploration_bonus_type=exploration_bonus_type,
clipped_rewards=clipped_rewards,
intrinsic_reward_loss_coef=intrinsic_reward_loss_coef,
intrinsic_reward_coef=intrinsic_reward_coef,
intrinsic_reward_learning_rate=intrinsic_reward_learning_rate,
intrinsic_reward_momentum=intrinsic_reward_momentum,
intrinsic_reward_epsilon=intrinsic_reward_epsilon,
intrinsic_reward_alpha=intrinsic_reward_alpha,
intrinsic_reward_max_grad_norm=intrinsic_reward_max_grad_norm,
intrinsic_reward_forward_loss_coef=intrinsic_reward_forward_loss_coef,
intrinsic_reward_inverse_loss_coef=intrinsic_reward_inverse_loss_coef,
balance_moa_training=balance_moa_training,
moa_memory_dim=moa_memory_dim,
reset_rnd_ride_at_phase=reset_rnd_ride_at_phase,
)
self.clip_eps = clip_eps
self.epochs = epochs
self.intrinsic_reward_epochs = intrinsic_reward_epochs
self.batch_size = batch_size
assert self.batch_size % self.recurrence == 0
if self.exploration_bonus and "soc_inf" in self.exploration_bonus_type:
adam_params = list(dict.fromkeys(list(self.acmodel.parameters()) + list(self.moa_net.parameters())))
self.optimizer = torch.optim.Adam(adam_params, lr, eps=adam_eps)
else:
self.optimizer = torch.optim.Adam(self.acmodel.parameters(), lr, eps=adam_eps)
self.schedule_lr = schedule_lr
self.lr_schedule_end_frames = lr_schedule_end_frames
assert end_lr <= lr
def lr_lambda(step):
if self.lr_schedule_end_frames == 0:
# no schedule
return 1
end_factor = end_lr/lr
final_diminished_factor = 1-end_factor
n_frames = self.step_to_n_frames(step)
return 1 - (min(n_frames, self.lr_schedule_end_frames) / self.lr_schedule_end_frames) * final_diminished_factor
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda)
self.batch_num = 0
def load_status_dict(self, status):
super().load_status_dict(status)
if "optimizer_state" in status:
self.optimizer.load_state_dict(status["optimizer_state"])
if "lr_scheduler_state" in status:
self.lr_scheduler.load_state_dict(status["lr_scheduler_state"])
def get_status_dict(self):
status_dict = super().get_status_dict()
status_dict["optimizer_state"] = self.optimizer.state_dict()
status_dict["lr_scheduler_state"] = self.lr_scheduler.state_dict()
return status_dict
def update_parameters(self, exps):
# Collect experiences
self.acmodel.train()
self.update_epoch += 1
intr_rew_perf = torch.tensor(0.0)
intr_rew_perf_ = 0.0
social_influence = False
if self.exploration_bonus:
if "rnd" in self.exploration_bonus_type:
imgs = exps.obs.image.reshape(
self.num_procs, self.num_frames_per_proc, *exps.obs.image.shape[1:]
).transpose(0, 1)
mask = exps.mask.reshape(
self.num_procs, self.num_frames_per_proc, 1,
).transpose(0, 1)
self.random_target_network.train()
self.predictor_network.train()
random_embedding = self.random_target_network(imgs).reshape(self.num_frames_per_proc, self.num_procs, 128)
predicted_embedding = self.predictor_network(imgs).reshape(self.num_frames_per_proc, self.num_procs, 128)
intr_rew_loss = self.intrinsic_reward_loss_coef * compute_forward_dynamics_loss(mask*predicted_embedding, mask*random_embedding.detach())
# update the intr rew models
self.intrinsic_reward_optimizer.zero_grad()
intr_rew_loss.backward()
torch.nn.utils.clip_grad_norm_(self.predictor_network.parameters(), self.intrinsic_reward_max_grad_norm)
self.intrinsic_reward_optimizer.step()
intr_rew_perf = intr_rew_loss
elif "ride" in self.exploration_bonus_type:
imgs = exps.obs.image.reshape(
self.num_procs, self.num_frames_per_proc, *exps.obs.image.shape[1:]
).transpose(0, 1)
mask = exps.mask.reshape(
self.num_procs, self.num_frames_per_proc
).transpose(0, 1).to(torch.int64)
# we only take the first (primitive) action
action = exps.action[:, 0].reshape(
self.num_procs, self.num_frames_per_proc
).transpose(0, 1).to(torch.int64)
_mask = mask[:-1]
_obs = imgs[:-1]
_actions = action[:-1]
_next_obs = imgs[1:]
self.state_embedding_model.train()
self.forward_dynamics_model.train()
self.inverse_dynamics_model.train()
state_emb = self.state_embedding_model(_obs.to(device=self.device))
next_state_emb = self.state_embedding_model(_next_obs.to(device=self.device))
pred_next_state_emb = self.forward_dynamics_model(state_emb, _actions.to(device=self.device))
pred_actions = self.inverse_dynamics_model(state_emb, next_state_emb)
forward_dynamics_loss = self.intrinsic_reward_forward_loss_coef * \
compute_forward_dynamics_loss(_mask[:,:,None]*pred_next_state_emb, _mask[:,:,None]*next_state_emb)
inverse_dynamics_loss = self.intrinsic_reward_inverse_loss_coef * \
compute_inverse_dynamics_loss(_mask[:,:,None]*pred_actions, _mask*_actions)
# update the intr rew models
self.state_embedding_optimizer.zero_grad()
self.forward_dynamics_optimizer.zero_grad()
self.inverse_dynamics_optimizer.zero_grad()
intr_rew_loss = forward_dynamics_loss + inverse_dynamics_loss
intr_rew_loss.backward()
torch.nn.utils.clip_grad_norm_(self.state_embedding_model.parameters(), self.intrinsic_reward_max_grad_norm)
torch.nn.utils.clip_grad_norm_(self.forward_dynamics_model.parameters(), self.intrinsic_reward_max_grad_norm)
torch.nn.utils.clip_grad_norm_(self.inverse_dynamics_model.parameters(), self.intrinsic_reward_max_grad_norm)
self.state_embedding_optimizer.step()
self.forward_dynamics_optimizer.step()
self.inverse_dynamics_optimizer.step()
intr_rew_perf = intr_rew_loss
elif "soc_inf" in self.exploration_bonus_type:
# trained together with the policy
social_influence = True
self.moa_net.train()
if self.intrinsic_reward_epochs > 0:
raise DeprecationWarning(f"Moa must be trained with the agent. intrinsic_reward_epochs must be 0 but is {self.intrinsic_reward_epochs}")
for _ in range(self.epochs):
# Initialize log values
log_entropies = []
log_values = []
log_policy_losses = []
log_value_losses = []
log_grad_norms = []
log_lrs = []
for inds in self._get_batches_starting_indexes():
# Initialize batch values
batch_entropy = 0
batch_value = 0
batch_policy_loss = 0
batch_value_loss = 0
batch_loss = 0
# intr reward metrics
batch_intr_rew_loss = 0
batch_intr_rew_acc = 0
batch_intr_rew_f1 = 0
# Initialize memory
if self.acmodel.recurrent:
memory = exps.memory[inds]
if social_influence:
# Initialize moa memory
moa_memory = exps.moa_memory[inds]
prev_npc_prim_action = None
for i in range(self.recurrence):
# Create a sub-batch of experience
sb = exps[inds + i]
# Compute loss
if self.acmodel.recurrent:
dist, value, memory, policy_embeddings = self.acmodel(sb.obs, memory * sb.mask, return_embeddings=True)
else:
dist, value, policy_embeddings = self.acmodel(sb.obs, return_embeddings=True)
losses = []
for head_i, d in enumerate(dist):
action_masks = self.acmodel.calculate_action_gradient_masks(sb.action).type(sb.log_prob.type())
entropy = (d.entropy() * action_masks[:, head_i]).mean()
ratio = torch.exp(d.log_prob(sb.action[:, head_i]) - sb.log_prob[:, head_i])
surr1 = ratio * sb.advantage
surr2 = torch.clamp(ratio, 1.0 - self.clip_eps, 1.0 + self.clip_eps) * sb.advantage
policy_loss = (
-torch.min(surr1, surr2) * action_masks[:, head_i]
).mean()
value_clipped = sb.value + torch.clamp(value - sb.value, -self.clip_eps, self.clip_eps)
surr1 = (value - sb.returnn).pow(2)
surr2 = (value_clipped - sb.returnn).pow(2)
value_loss = (
torch.max(surr1, surr2) * action_masks[:, head_i]
).mean()
head_loss = policy_loss - self.entropy_coef * entropy + self.value_loss_coef * value_loss
losses.append(head_loss)
if social_influence:
# moa loss
imgs = sb.obs.image
mask = sb.mask.to(torch.int64)
# we only take the first (primitive) action
agent_action = sb.action.to(torch.int64)
infos = numpy.array(sb.infos)
npc_prim_action = torch.tensor(
numpy.array([self.fn_name_to_npc_prim_act[info["NPC_prim_action"]] for info in infos]))
npc_utt_action = torch.tensor(
numpy.array([self.npc_utterance_to_id[info["NPC_utterance"]] for info in infos]))
assert infos.shape == imgs.shape[:1] == agent_action.shape[:1] # [bs]
if i == 0:
prev_npc_prim_action = npc_prim_action
prev_npc_utt_action = npc_utt_action
else:
# compute loss and train moa net
if self.utterance_moa_net:
# transform to long logits
target = npc_prim_action.detach().to(self.device) * self.num_npc_utterance_actions + npc_utt_action.detach().to(self.device)
else:
target = npc_prim_action.detach().to(self.device)
if self.balance_moa_training:
balance_mask = compute_balance_mask(target, n_classes=self.num_npc_all_actions)
else:
balance_mask = torch.ones_like(target)
moa_predictions_logs, moa_memory = self.moa_net(
embeddings=policy_embeddings,
npc_previous_prim_actions=prev_npc_prim_action.detach().to(self.device),
npc_previous_utterance_actions=prev_npc_utt_action.detach().to(self.device) if self.utterance_moa_net else None,
agent_actions=agent_action.detach().to(self.device),
memory=moa_memory * mask,
)
# moa_predictions_logs = moa_predictions_logs.reshape([*prev_shape, -1]) # is this needed
# loss
ce_loss = torch.nn.CrossEntropyLoss(reduction='none')
intr_rew_loss = (
balance_mask * mask * ce_loss(
input=moa_predictions_logs,
target=target,
)).mean() * self.intrinsic_reward_loss_coef
preds = moa_predictions_logs.detach().argmax(dim=-1)
intr_rew_f1 = f1_score(
y_pred=preds.detach().cpu().numpy(),
y_true=target.detach().cpu().numpy(),
average="macro"
)
intr_rew_acc = (
torch.argmax(moa_predictions_logs.to(self.device), dim=-1) == target
).to(float).mean()
batch_intr_rew_loss += intr_rew_loss
batch_intr_rew_acc += intr_rew_acc.detach().cpu().numpy().mean()
batch_intr_rew_f1 += intr_rew_f1
losses.append(intr_rew_loss) # trained with the policy optimizer
loss = torch.stack(losses).mean()
# Update batch values
batch_entropy += entropy.item()
batch_value += value.mean().item()
batch_policy_loss += policy_loss.item()
batch_value_loss += value_loss.item()
batch_loss += loss
# Update memories for next epoch
# assert self.acmodel.recurrent == (self.recurrence > 1)
if self.acmodel.recurrent and i < self.recurrence - 1:
exps.memory[inds + i + 1] = memory.detach()
if social_influence and i < self.recurrence - 1:
exps.moa_memory[inds + i + 1] = moa_memory.detach()
# Update batch values
batch_entropy /= self.recurrence
batch_value /= self.recurrence
batch_policy_loss /= self.recurrence
batch_value_loss /= self.recurrence
batch_loss /= self.recurrence
# Update actor-critic
self.optimizer.zero_grad()
batch_loss.backward()
grad_norm = sum(p.grad.data.norm(2).item() ** 2 for p in self.acmodel.parameters()) ** 0.5
torch.nn.utils.clip_grad_norm_(self.acmodel.parameters(), self.max_grad_norm)
self.optimizer.step()
self.lr_scheduler.step()
if social_influence:
# recurrence-1 because we skipped the first step
batch_intr_rew_loss /= self.recurrence - 1
batch_intr_rew_acc /= self.recurrence - 1
batch_intr_rew_f1 /= self.recurrence - 1
intr_rew_perf_ = batch_intr_rew_f1
intr_rew_perf = batch_intr_rew_acc
# Update log values
log_entropies.append(batch_entropy)
log_values.append(batch_value)
log_policy_losses.append(batch_policy_loss)
log_value_losses.append(batch_value_loss)
log_grad_norms.append(grad_norm)
log_lrs.append(self.optimizer.param_groups[0]['lr'])
# Log some values
logs = {
"entropy": numpy.mean(log_entropies),
"value": numpy.mean(log_values),
"policy_loss": numpy.mean(log_policy_losses),
"value_loss": numpy.mean(log_value_losses),
"grad_norm": numpy.mean(log_grad_norms),
"intr_reward_perf": intr_rew_perf,
"intr_reward_perf_": intr_rew_perf_,
"lr": numpy.mean(log_lrs),
}
return logs
def _get_batches_starting_indexes(self):
"""Gives, for each batch, the indexes of the observations given to
the model and the experiences used to compute the loss at first.
First, the indexes are the integers from 0 to `self.num_frames` with a step of
`self.recurrence`, shifted by `self.recurrence//2` one time in two for having
more diverse batches. Then, the indexes are splited into the different batches.
Returns
-------
batches_starting_indexes : list of list of int
the indexes of the experiences to be used at first for each batch
"""
indexes = numpy.arange(0, self.num_frames, self.recurrence)
indexes = numpy.random.permutation(indexes)
# Shift starting indexes by self.recurrence//2 half the time
if self.batch_num % 2 == 1:
indexes = indexes[(indexes + self.recurrence) % self.num_frames_per_proc != 0]
indexes += self.recurrence // 2
self.batch_num += 1
num_indexes = self.batch_size // self.recurrence
batches_starting_indexes = [indexes[i:i+num_indexes] for i in range(0, len(indexes), num_indexes)]
return batches_starting_indexes
def get_config_dict(self):
del self.config['envs']
del self.config['acmodel']
del self.config['__class__']
del self.config['self']
del self.config['preprocess_obss']
del self.config['device']
return self.config
|