Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,11 @@ import numpy as np
|
|
9 |
from PIL import Image
|
10 |
import spaces
|
11 |
import torch
|
12 |
-
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
13 |
|
14 |
DESCRIPTION = """
|
15 |
-
# [
|
16 |
|
17 |
"""
|
18 |
if not torch.cuda.is_available():
|
@@ -51,6 +52,14 @@ if torch.cuda.is_available():
|
|
51 |
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
|
52 |
pipe_epic.to(device)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
pipe_xl = StableDiffusionXLPipeline.from_pretrained(
|
55 |
"fluently/Fluently-XL-v2",
|
56 |
torch_dtype=torch.float16,
|
@@ -74,10 +83,20 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
74 |
seed = random.randint(0, MAX_SEED)
|
75 |
return seed
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
@spaces.GPU(enable_queue=True)
|
79 |
def generate(
|
80 |
model,
|
|
|
|
|
|
|
|
|
81 |
prompt: str,
|
82 |
negative_prompt: str = "",
|
83 |
use_negative_prompt: bool = False,
|
@@ -127,7 +146,7 @@ def generate(
|
|
127 |
num_images_per_prompt=1,
|
128 |
output_type="pil",
|
129 |
).images
|
130 |
-
|
131 |
images = pipe_xl(
|
132 |
prompt=prompt,
|
133 |
negative_prompt=negative_prompt,
|
@@ -138,11 +157,28 @@ def generate(
|
|
138 |
num_images_per_prompt=1,
|
139 |
output_type="pil",
|
140 |
).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
image_paths = [save_image(img) for img in images]
|
143 |
print(image_paths)
|
144 |
return image_paths, seed
|
145 |
|
|
|
|
|
146 |
|
147 |
|
148 |
|
@@ -173,10 +209,20 @@ with gr.Blocks(title="Fluently Playground", css=css) as demo:
|
|
173 |
with gr.Row():
|
174 |
model = gr.Radio(
|
175 |
label="Model",
|
176 |
-
choices=["Fluently XL v2", "Fluently v3.5", "Fluently Anime", "Fluently Epic"],
|
177 |
value="Fluently v3.5",
|
178 |
interactive=True,
|
179 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
with gr.Group():
|
181 |
with gr.Row():
|
182 |
prompt = gr.Text(
|
@@ -244,6 +290,13 @@ with gr.Blocks(title="Fluently Playground", css=css) as demo:
|
|
244 |
outputs=negative_prompt,
|
245 |
api_name=False,
|
246 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
|
249 |
gr.on(
|
@@ -255,6 +308,10 @@ with gr.Blocks(title="Fluently Playground", css=css) as demo:
|
|
255 |
fn=generate,
|
256 |
inputs=[
|
257 |
model,
|
|
|
|
|
|
|
|
|
258 |
prompt,
|
259 |
negative_prompt,
|
260 |
use_negative_prompt,
|
|
|
9 |
from PIL import Image
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
13 |
+
from diffusers.utils import load_image
|
14 |
|
15 |
DESCRIPTION = """
|
16 |
+
# [Fluently Playground](https://huggingface.co/fluently)
|
17 |
|
18 |
"""
|
19 |
if not torch.cuda.is_available():
|
|
|
52 |
pipe_epic.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_epic.scheduler.config)
|
53 |
pipe_epic.to(device)
|
54 |
|
55 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
56 |
+
"fluently/Fluently-v3-inpainting",
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
use_safetensors=True,
|
59 |
+
)
|
60 |
+
#pipe_inpaint.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_inpaint.scheduler.config)
|
61 |
+
pipe_inpaint.to(device)
|
62 |
+
|
63 |
pipe_xl = StableDiffusionXLPipeline.from_pretrained(
|
64 |
"fluently/Fluently-XL-v2",
|
65 |
torch_dtype=torch.float16,
|
|
|
83 |
seed = random.randint(0, MAX_SEED)
|
84 |
return seed
|
85 |
|
86 |
+
def get_model(model):
|
87 |
+
if model == "Fluently v3 inpaint":
|
88 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
89 |
+
else:
|
90 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
91 |
+
|
92 |
|
93 |
@spaces.GPU(enable_queue=True)
|
94 |
def generate(
|
95 |
model,
|
96 |
+
inpaint_image,
|
97 |
+
mask_image,
|
98 |
+
blur_factor,
|
99 |
+
strength,
|
100 |
prompt: str,
|
101 |
negative_prompt: str = "",
|
102 |
use_negative_prompt: bool = False,
|
|
|
146 |
num_images_per_prompt=1,
|
147 |
output_type="pil",
|
148 |
).images
|
149 |
+
elif model == "Fluently XL v2":
|
150 |
images = pipe_xl(
|
151 |
prompt=prompt,
|
152 |
negative_prompt=negative_prompt,
|
|
|
157 |
num_images_per_prompt=1,
|
158 |
output_type="pil",
|
159 |
).images
|
160 |
+
else:
|
161 |
+
blurred_mask = pipe_inpaint.mask_processor.blur(mask_image, blur_factor=blur_factor)
|
162 |
+
images = pipe_inpaint(
|
163 |
+
prompt=prompt,
|
164 |
+
image=inpaint_image,
|
165 |
+
mask_image=blurred_mask,
|
166 |
+
negative_prompt=negative_prompt,
|
167 |
+
width=width,
|
168 |
+
height=height,
|
169 |
+
guidance_scale=guidance_scale,
|
170 |
+
num_inference_steps=30,
|
171 |
+
strength=strength,
|
172 |
+
num_images_per_prompt=1,
|
173 |
+
output_type="pil",
|
174 |
+
).images
|
175 |
|
176 |
image_paths = [save_image(img) for img in images]
|
177 |
print(image_paths)
|
178 |
return image_paths, seed
|
179 |
|
180 |
+
|
181 |
+
|
182 |
|
183 |
|
184 |
|
|
|
209 |
with gr.Row():
|
210 |
model = gr.Radio(
|
211 |
label="Model",
|
212 |
+
choices=["Fluently XL v2", "Fluently v3.5", "Fluently Anime", "Fluently Epic", "Fluently v3 inpaint"],
|
213 |
value="Fluently v3.5",
|
214 |
interactive=True,
|
215 |
)
|
216 |
+
|
217 |
+
md_mask = gr.Markdown("""
|
218 |
+
β οΈ To generate an inpaint mask, go [here](https://huggingface.co/spaces/stevhliu/inpaint-mask-maker).
|
219 |
+
""", visible=False)
|
220 |
+
inpaint_image = gr.Image(label="Inpaint Image", interactive=True, scale=5, visible=False, type="pil")
|
221 |
+
mask_image = gr.Image(label="Mask Image", interactive=True, scale=5, visible=False, type="pil")
|
222 |
+
|
223 |
+
blur_factor = gr.Slider(label="Mask Blur Factor", minimum=0, maximum=100, value=4, step=1, interactive=True, visible=False)
|
224 |
+
strength = gr.Slider(label="Denoising Strength", minimum=0.00, maximum=1.00, value=0.70, step=0.01, interactive=True, visible=False)
|
225 |
+
|
226 |
with gr.Group():
|
227 |
with gr.Row():
|
228 |
prompt = gr.Text(
|
|
|
290 |
outputs=negative_prompt,
|
291 |
api_name=False,
|
292 |
)
|
293 |
+
|
294 |
+
model.change(
|
295 |
+
fn=get_model,
|
296 |
+
inputs=model,
|
297 |
+
outputs=[md_mask, inpaint_image, mask_image, blur_factor, strength],
|
298 |
+
api_name=False,
|
299 |
+
)
|
300 |
|
301 |
|
302 |
gr.on(
|
|
|
308 |
fn=generate,
|
309 |
inputs=[
|
310 |
model,
|
311 |
+
inpaint_image,
|
312 |
+
mask_image,
|
313 |
+
blur_factor,
|
314 |
+
strength,
|
315 |
prompt,
|
316 |
negative_prompt,
|
317 |
use_negative_prompt,
|