Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import math | |
from modules.ui_components import InputAccordion | |
import modules.scripts as scripts | |
class SoftInpaintingSettings: | |
def __init__(self, | |
mask_blend_power, | |
mask_blend_scale, | |
inpaint_detail_preservation, | |
composite_mask_influence, | |
composite_difference_threshold, | |
composite_difference_contrast): | |
self.mask_blend_power = mask_blend_power | |
self.mask_blend_scale = mask_blend_scale | |
self.inpaint_detail_preservation = inpaint_detail_preservation | |
self.composite_mask_influence = composite_mask_influence | |
self.composite_difference_threshold = composite_difference_threshold | |
self.composite_difference_contrast = composite_difference_contrast | |
def add_generation_params(self, dest): | |
dest[enabled_gen_param_label] = True | |
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power | |
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale | |
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation | |
dest[gen_param_labels.composite_mask_influence] = self.composite_mask_influence | |
dest[gen_param_labels.composite_difference_threshold] = self.composite_difference_threshold | |
dest[gen_param_labels.composite_difference_contrast] = self.composite_difference_contrast | |
# ------------------- Methods ------------------- | |
def processing_uses_inpainting(p): | |
# TODO: Figure out a better way to determine if inpainting is being used by p | |
if getattr(p, "image_mask", None) is not None: | |
return True | |
if getattr(p, "mask", None) is not None: | |
return True | |
if getattr(p, "nmask", None) is not None: | |
return True | |
return False | |
def latent_blend(settings, a, b, t): | |
""" | |
Interpolates two latent image representations according to the parameter t, | |
where the interpolated vectors' magnitudes are also interpolated separately. | |
The "detail_preservation" factor biases the magnitude interpolation towards | |
the larger of the two magnitudes. | |
""" | |
import torch | |
# NOTE: We use inplace operations wherever possible. | |
# [4][w][h] to [1][4][w][h] | |
t2 = t.unsqueeze(0) | |
# [4][w][h] to [1][1][w][h] - the [4] seem redundant. | |
t3 = t[0].unsqueeze(0).unsqueeze(0) | |
one_minus_t2 = 1 - t2 | |
one_minus_t3 = 1 - t3 | |
# Linearly interpolate the image vectors. | |
a_scaled = a * one_minus_t2 | |
b_scaled = b * t2 | |
image_interp = a_scaled | |
image_interp.add_(b_scaled) | |
result_type = image_interp.dtype | |
del a_scaled, b_scaled, t2, one_minus_t2 | |
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.) | |
# 64-bit operations are used here to allow large exponents. | |
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001) | |
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1). | |
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_( | |
settings.inpaint_detail_preservation) * one_minus_t3 | |
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_( | |
settings.inpaint_detail_preservation) * t3 | |
desired_magnitude = a_magnitude | |
desired_magnitude.add_(b_magnitude).pow_(1 / settings.inpaint_detail_preservation) | |
del a_magnitude, b_magnitude, t3, one_minus_t3 | |
# Change the linearly interpolated image vectors' magnitudes to the value we want. | |
# This is the last 64-bit operation. | |
image_interp_scaling_factor = desired_magnitude | |
image_interp_scaling_factor.div_(current_magnitude) | |
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type) | |
image_interp_scaled = image_interp | |
image_interp_scaled.mul_(image_interp_scaling_factor) | |
del current_magnitude | |
del desired_magnitude | |
del image_interp | |
del image_interp_scaling_factor | |
del result_type | |
return image_interp_scaled | |
def get_modified_nmask(settings, nmask, sigma): | |
""" | |
Converts a negative mask representing the transparency of the original latent vectors being overlayed | |
to a mask that is scaled according to the denoising strength for this step. | |
Where: | |
0 = fully opaque, infinite density, fully masked | |
1 = fully transparent, zero density, fully unmasked | |
We bring this transparency to a power, as this allows one to simulate N number of blending operations | |
where N can be any positive real value. Using this one can control the balance of influence between | |
the denoiser and the original latents according to the sigma value. | |
NOTE: "mask" is not used | |
""" | |
import torch | |
return torch.pow(nmask, (sigma ** settings.mask_blend_power) * settings.mask_blend_scale) | |
def apply_adaptive_masks( | |
settings: SoftInpaintingSettings, | |
nmask, | |
latent_orig, | |
latent_processed, | |
overlay_images, | |
width, height, | |
paste_to): | |
import torch | |
import modules.processing as proc | |
import modules.images as images | |
from PIL import Image, ImageOps, ImageFilter | |
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control. | |
latent_mask = nmask[0].float() | |
# convert the original mask into a form we use to scale distances for thresholding | |
mask_scalar = 1 - (torch.clamp(latent_mask, min=0, max=1) ** (settings.mask_blend_scale / 2)) | |
mask_scalar = (0.5 * (1 - settings.composite_mask_influence) | |
+ mask_scalar * settings.composite_mask_influence) | |
mask_scalar = mask_scalar / (1.00001 - mask_scalar) | |
mask_scalar = mask_scalar.cpu().numpy() | |
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1) | |
kernel, kernel_center = get_gaussian_kernel(stddev_radius=1.5, max_radius=2) | |
masks_for_overlay = [] | |
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)): | |
converted_mask = distance_map.float().cpu().numpy() | |
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center, | |
percentile_min=0.9, percentile_max=1, min_width=1) | |
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center, | |
percentile_min=0.25, percentile_max=0.75, min_width=1) | |
# The distance at which opacity of original decreases to 50% | |
half_weighted_distance = settings.composite_difference_threshold * mask_scalar | |
converted_mask = converted_mask / half_weighted_distance | |
converted_mask = 1 / (1 + converted_mask ** settings.composite_difference_contrast) | |
converted_mask = smootherstep(converted_mask) | |
converted_mask = 1 - converted_mask | |
converted_mask = 255. * converted_mask | |
converted_mask = converted_mask.astype(np.uint8) | |
converted_mask = Image.fromarray(converted_mask) | |
converted_mask = images.resize_image(2, converted_mask, width, height) | |
converted_mask = proc.create_binary_mask(converted_mask, round=False) | |
# Remove aliasing artifacts using a gaussian blur. | |
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4)) | |
# Expand the mask to fit the whole image if needed. | |
if paste_to is not None: | |
converted_mask = proc.uncrop(converted_mask, | |
(overlay_image.width, overlay_image.height), | |
paste_to) | |
masks_for_overlay.append(converted_mask) | |
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height)) | |
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"), | |
mask=ImageOps.invert(converted_mask.convert('L'))) | |
overlay_images[i] = image_masked.convert('RGBA') | |
return masks_for_overlay | |
def apply_masks( | |
settings, | |
nmask, | |
overlay_images, | |
width, height, | |
paste_to): | |
import torch | |
import modules.processing as proc | |
import modules.images as images | |
from PIL import Image, ImageOps, ImageFilter | |
converted_mask = nmask[0].float() | |
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(settings.mask_blend_scale / 2) | |
converted_mask = 255. * converted_mask | |
converted_mask = converted_mask.cpu().numpy().astype(np.uint8) | |
converted_mask = Image.fromarray(converted_mask) | |
converted_mask = images.resize_image(2, converted_mask, width, height) | |
converted_mask = proc.create_binary_mask(converted_mask, round=False) | |
# Remove aliasing artifacts using a gaussian blur. | |
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4)) | |
# Expand the mask to fit the whole image if needed. | |
if paste_to is not None: | |
converted_mask = proc.uncrop(converted_mask, | |
(width, height), | |
paste_to) | |
masks_for_overlay = [] | |
for i, overlay_image in enumerate(overlay_images): | |
masks_for_overlay[i] = converted_mask | |
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height)) | |
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"), | |
mask=ImageOps.invert(converted_mask.convert('L'))) | |
overlay_images[i] = image_masked.convert('RGBA') | |
return masks_for_overlay | |
def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0): | |
""" | |
Generalization convolution filter capable of applying | |
weighted mean, median, maximum, and minimum filters | |
parametrically using an arbitrary kernel. | |
Args: | |
img (nparray): | |
The image, a 2-D array of floats, to which the filter is being applied. | |
kernel (nparray): | |
The kernel, a 2-D array of floats. | |
kernel_center (nparray): | |
The kernel center coordinate, a 1-D array with two elements. | |
percentile_min (float): | |
The lower bound of the histogram window used by the filter, | |
from 0 to 1. | |
percentile_max (float): | |
The upper bound of the histogram window used by the filter, | |
from 0 to 1. | |
min_width (float): | |
The minimum size of the histogram window bounds, in weight units. | |
Must be greater than 0. | |
Returns: | |
(nparray): A filtered copy of the input image "img", a 2-D array of floats. | |
""" | |
# Converts an index tuple into a vector. | |
def vec(x): | |
return np.array(x) | |
kernel_min = -kernel_center | |
kernel_max = vec(kernel.shape) - kernel_center | |
def weighted_histogram_filter_single(idx): | |
idx = vec(idx) | |
min_index = np.maximum(0, idx + kernel_min) | |
max_index = np.minimum(vec(img.shape), idx + kernel_max) | |
window_shape = max_index - min_index | |
class WeightedElement: | |
""" | |
An element of the histogram, its weight | |
and bounds. | |
""" | |
def __init__(self, value, weight): | |
self.value: float = value | |
self.weight: float = weight | |
self.window_min: float = 0.0 | |
self.window_max: float = 1.0 | |
# Collect the values in the image as WeightedElements, | |
# weighted by their corresponding kernel values. | |
values = [] | |
for window_tup in np.ndindex(tuple(window_shape)): | |
window_index = vec(window_tup) | |
image_index = window_index + min_index | |
centered_kernel_index = image_index - idx | |
kernel_index = centered_kernel_index + kernel_center | |
element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)]) | |
values.append(element) | |
def sort_key(x: WeightedElement): | |
return x.value | |
values.sort(key=sort_key) | |
# Calculate the height of the stack (sum) | |
# and each sample's range they occupy in the stack | |
sum = 0 | |
for i in range(len(values)): | |
values[i].window_min = sum | |
sum += values[i].weight | |
values[i].window_max = sum | |
# Calculate what range of this stack ("window") | |
# we want to get the weighted average across. | |
window_min = sum * percentile_min | |
window_max = sum * percentile_max | |
window_width = window_max - window_min | |
# Ensure the window is within the stack and at least a certain size. | |
if window_width < min_width: | |
window_center = (window_min + window_max) / 2 | |
window_min = window_center - min_width / 2 | |
window_max = window_center + min_width / 2 | |
if window_max > sum: | |
window_max = sum | |
window_min = sum - min_width | |
if window_min < 0: | |
window_min = 0 | |
window_max = min_width | |
value = 0 | |
value_weight = 0 | |
# Get the weighted average of all the samples | |
# that overlap with the window, weighted | |
# by the size of their overlap. | |
for i in range(len(values)): | |
if window_min >= values[i].window_max: | |
continue | |
if window_max <= values[i].window_min: | |
break | |
s = max(window_min, values[i].window_min) | |
e = min(window_max, values[i].window_max) | |
w = e - s | |
value += values[i].value * w | |
value_weight += w | |
return value / value_weight if value_weight != 0 else 0 | |
img_out = img.copy() | |
# Apply the kernel operation over each pixel. | |
for index in np.ndindex(img.shape): | |
img_out[index] = weighted_histogram_filter_single(index) | |
return img_out | |
def smoothstep(x): | |
""" | |
The smoothstep function, input should be clamped to 0-1 range. | |
Turns a diagonal line (f(x) = x) into a sigmoid-like curve. | |
""" | |
return x * x * (3 - 2 * x) | |
def smootherstep(x): | |
""" | |
The smootherstep function, input should be clamped to 0-1 range. | |
Turns a diagonal line (f(x) = x) into a sigmoid-like curve. | |
""" | |
return x * x * x * (x * (6 * x - 15) + 10) | |
def get_gaussian_kernel(stddev_radius=1.0, max_radius=2): | |
""" | |
Creates a Gaussian kernel with thresholded edges. | |
Args: | |
stddev_radius (float): | |
Standard deviation of the gaussian kernel, in pixels. | |
max_radius (int): | |
The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2. | |
The kernel is thresholded so that any values one pixel beyond this radius | |
is weighted at 0. | |
Returns: | |
(nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2)) | |
""" | |
# Evaluates a 0-1 normalized gaussian function for a given square distance from the mean. | |
def gaussian(sqr_mag): | |
return math.exp(-sqr_mag / (stddev_radius * stddev_radius)) | |
# Helper function for converting a tuple to an array. | |
def vec(x): | |
return np.array(x) | |
""" | |
Since a gaussian is unbounded, we need to limit ourselves | |
to a finite range. | |
We taper the ends off at the end of that range so they equal zero | |
while preserving the maximum value of 1 at the mean. | |
""" | |
zero_radius = max_radius + 1.0 | |
gauss_zero = gaussian(zero_radius * zero_radius) | |
gauss_kernel_scale = 1 / (1 - gauss_zero) | |
def gaussian_kernel_func(coordinate): | |
x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0 | |
x = gaussian(x) | |
x -= gauss_zero | |
x *= gauss_kernel_scale | |
x = max(0.0, x) | |
return x | |
size = max_radius * 2 + 1 | |
kernel_center = max_radius | |
kernel = np.zeros((size, size)) | |
for index in np.ndindex(kernel.shape): | |
kernel[index] = gaussian_kernel_func(vec(index) - kernel_center) | |
return kernel, kernel_center | |
# ------------------- Constants ------------------- | |
default = SoftInpaintingSettings(1, 0.5, 4, 0, 0.5, 2) | |
enabled_ui_label = "Soft inpainting" | |
enabled_gen_param_label = "Soft inpainting enabled" | |
enabled_el_id = "soft_inpainting_enabled" | |
ui_labels = SoftInpaintingSettings( | |
"Schedule bias", | |
"Preservation strength", | |
"Transition contrast boost", | |
"Mask influence", | |
"Difference threshold", | |
"Difference contrast") | |
ui_info = SoftInpaintingSettings( | |
"Shifts when preservation of original content occurs during denoising.", | |
"How strongly partially masked content should be preserved.", | |
"Amplifies the contrast that may be lost in partially masked regions.", | |
"How strongly the original mask should bias the difference threshold.", | |
"How much an image region can change before the original pixels are not blended in anymore.", | |
"How sharp the transition should be between blended and not blended.") | |
gen_param_labels = SoftInpaintingSettings( | |
"Soft inpainting schedule bias", | |
"Soft inpainting preservation strength", | |
"Soft inpainting transition contrast boost", | |
"Soft inpainting mask influence", | |
"Soft inpainting difference threshold", | |
"Soft inpainting difference contrast") | |
el_ids = SoftInpaintingSettings( | |
"mask_blend_power", | |
"mask_blend_scale", | |
"inpaint_detail_preservation", | |
"composite_mask_influence", | |
"composite_difference_threshold", | |
"composite_difference_contrast") | |
# ------------------- Script ------------------- | |
class Script(scripts.Script): | |
def __init__(self): | |
self.section = "inpaint" | |
self.masks_for_overlay = None | |
self.overlay_images = None | |
def title(self): | |
return "Soft Inpainting" | |
def show(self, is_img2img): | |
return scripts.AlwaysVisible if is_img2img else False | |
def ui(self, is_img2img): | |
if not is_img2img: | |
return | |
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled: | |
with gr.Group(): | |
gr.Markdown( | |
""" | |
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity. | |
**High _Mask blur_** values are recommended! | |
""") | |
power = \ | |
gr.Slider(label=ui_labels.mask_blend_power, | |
info=ui_info.mask_blend_power, | |
minimum=0, | |
maximum=8, | |
step=0.1, | |
value=default.mask_blend_power, | |
elem_id=el_ids.mask_blend_power) | |
scale = \ | |
gr.Slider(label=ui_labels.mask_blend_scale, | |
info=ui_info.mask_blend_scale, | |
minimum=0, | |
maximum=8, | |
step=0.05, | |
value=default.mask_blend_scale, | |
elem_id=el_ids.mask_blend_scale) | |
detail = \ | |
gr.Slider(label=ui_labels.inpaint_detail_preservation, | |
info=ui_info.inpaint_detail_preservation, | |
minimum=1, | |
maximum=32, | |
step=0.5, | |
value=default.inpaint_detail_preservation, | |
elem_id=el_ids.inpaint_detail_preservation) | |
gr.Markdown( | |
""" | |
### Pixel Composite Settings | |
""") | |
mask_inf = \ | |
gr.Slider(label=ui_labels.composite_mask_influence, | |
info=ui_info.composite_mask_influence, | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=default.composite_mask_influence, | |
elem_id=el_ids.composite_mask_influence) | |
dif_thresh = \ | |
gr.Slider(label=ui_labels.composite_difference_threshold, | |
info=ui_info.composite_difference_threshold, | |
minimum=0, | |
maximum=8, | |
step=0.25, | |
value=default.composite_difference_threshold, | |
elem_id=el_ids.composite_difference_threshold) | |
dif_contr = \ | |
gr.Slider(label=ui_labels.composite_difference_contrast, | |
info=ui_info.composite_difference_contrast, | |
minimum=0, | |
maximum=8, | |
step=0.25, | |
value=default.composite_difference_contrast, | |
elem_id=el_ids.composite_difference_contrast) | |
with gr.Accordion("Help", open=False): | |
gr.Markdown( | |
f""" | |
### {ui_labels.mask_blend_power} | |
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas). | |
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step. | |
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation. | |
- **Below 1**: Stronger preservation near the end (with low sigma) | |
- **1**: Balanced (proportional to sigma) | |
- **Above 1**: Stronger preservation in the beginning (with high sigma) | |
""") | |
gr.Markdown( | |
f""" | |
### {ui_labels.mask_blend_scale} | |
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content. | |
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength. | |
- **Low values**: Favors generated content. | |
- **High values**: Favors original content. | |
""") | |
gr.Markdown( | |
f""" | |
### {ui_labels.inpaint_detail_preservation} | |
This parameter controls how the original latent vectors and denoised latent vectors are interpolated. | |
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors. | |
This can prevent the loss of contrast that occurs with linear interpolation. | |
- **Low values**: Softer blending, details may fade. | |
- **High values**: Stronger contrast, may over-saturate colors. | |
""") | |
gr.Markdown( | |
""" | |
## Pixel Composite Settings | |
Masks are generated based on how much a part of the image changed after denoising. | |
These masks are used to blend the original and final images together. | |
If the difference is low, the original pixels are used instead of the pixels returned by the inpainting process. | |
""") | |
gr.Markdown( | |
f""" | |
### {ui_labels.composite_mask_influence} | |
This parameter controls how much the mask should bias this sensitivity to difference. | |
- **0**: Ignore the mask, only consider differences in image content. | |
- **1**: Follow the mask closely despite image content changes. | |
""") | |
gr.Markdown( | |
f""" | |
### {ui_labels.composite_difference_threshold} | |
This value represents the difference at which the original pixels will have less than 50% opacity. | |
- **Low values**: Two images patches must be almost the same in order to retain original pixels. | |
- **High values**: Two images patches can be very different and still retain original pixels. | |
""") | |
gr.Markdown( | |
f""" | |
### {ui_labels.composite_difference_contrast} | |
This value represents the contrast between the opacity of the original and inpainted content. | |
- **Low values**: The blend will be more gradual and have longer transitions, but may cause ghosting. | |
- **High values**: Ghosting will be less common, but transitions may be very sudden. | |
""") | |
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label), | |
(power, gen_param_labels.mask_blend_power), | |
(scale, gen_param_labels.mask_blend_scale), | |
(detail, gen_param_labels.inpaint_detail_preservation), | |
(mask_inf, gen_param_labels.composite_mask_influence), | |
(dif_thresh, gen_param_labels.composite_difference_threshold), | |
(dif_contr, gen_param_labels.composite_difference_contrast)] | |
self.paste_field_names = [] | |
for _, field_name in self.infotext_fields: | |
self.paste_field_names.append(field_name) | |
return [soft_inpainting_enabled, | |
power, | |
scale, | |
detail, | |
mask_inf, | |
dif_thresh, | |
dif_contr] | |
def process(self, p, enabled, power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr): | |
if not enabled: | |
return | |
if not processing_uses_inpainting(p): | |
return | |
# Shut off the rounding it normally does. | |
p.mask_round = False | |
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr) | |
# p.extra_generation_params["Mask rounding"] = False | |
settings.add_generation_params(p.extra_generation_params) | |
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation, mask_inf, | |
dif_thresh, dif_contr): | |
if not enabled: | |
return | |
if not processing_uses_inpainting(p): | |
return | |
if mba.is_final_blend: | |
mba.blended_latent = mba.current_latent | |
return | |
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr) | |
# todo: Why is sigma 2D? Both values are the same. | |
mba.blended_latent = latent_blend(settings, | |
mba.init_latent, | |
mba.current_latent, | |
get_modified_nmask(settings, mba.nmask, mba.sigma[0])) | |
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation, mask_inf, | |
dif_thresh, dif_contr): | |
if not enabled: | |
return | |
if not processing_uses_inpainting(p): | |
return | |
nmask = getattr(p, "nmask", None) | |
if nmask is None: | |
return | |
from modules import images | |
from modules.shared import opts | |
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr) | |
# since the original code puts holes in the existing overlay images, | |
# we have to rebuild them. | |
self.overlay_images = [] | |
for img in p.init_images: | |
image = images.flatten(img, opts.img2img_background_color) | |
if p.paste_to is None and p.resize_mode != 3: | |
image = images.resize_image(p.resize_mode, image, p.width, p.height) | |
self.overlay_images.append(image.convert('RGBA')) | |
if len(p.init_images) == 1: | |
self.overlay_images = self.overlay_images * p.batch_size | |
if getattr(ps.samples, 'already_decoded', False): | |
self.masks_for_overlay = apply_masks(settings=settings, | |
nmask=nmask, | |
overlay_images=self.overlay_images, | |
width=p.width, | |
height=p.height, | |
paste_to=p.paste_to) | |
else: | |
self.masks_for_overlay = apply_adaptive_masks(settings=settings, | |
nmask=nmask, | |
latent_orig=p.init_latent, | |
latent_processed=ps.samples, | |
overlay_images=self.overlay_images, | |
width=p.width, | |
height=p.height, | |
paste_to=p.paste_to) | |
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale, | |
detail_preservation, mask_inf, dif_thresh, dif_contr): | |
if not enabled: | |
return | |
if not processing_uses_inpainting(p): | |
return | |
if self.masks_for_overlay is None: | |
return | |
if self.overlay_images is None: | |
return | |
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index] | |
ppmo.overlay_image = self.overlay_images[ppmo.index] | |