File size: 14,458 Bytes
3a3be3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c18c83f
3a3be3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6d5b4
3a3be3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import gradio as gr
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import (
    DirichletPartitioner,
    IidPartitioner,
    PathologicalPartitioner,
    ShardPartitioner,
    LinearPartitioner,
    SquarePartitioner,
    ExponentialPartitioner,
    NaturalIdPartitioner
)
from flwr_datasets.visualization import plot_label_distributions
import matplotlib.pyplot as plt

partitioner_types = {
    "DirichletPartitioner": DirichletPartitioner,
    "IidPartitioner": IidPartitioner,
    "PathologicalPartitioner": PathologicalPartitioner,
    "ShardPartitioner": ShardPartitioner,
    "LinearPartitioner": LinearPartitioner,
    "SquarePartitioner": SquarePartitioner,
    "ExponentialPartitioner": ExponentialPartitioner,
    "NaturalIdPartitioner": NaturalIdPartitioner,
}

partitioner_parameters = {
    "DirichletPartitioner": ["num_partitions", "alpha", "partition_by", "min_partition_size", "self_balancing"],
    "IidPartitioner": ["num_partitions"],
    "PathologicalPartitioner": ["num_partitions", "partition_by", "num_classes_per_partition", "class_assignment_mode"],
    "ShardPartitioner": ["num_partitions", "partition_by", "num_shards_per_partition", "shard_size", "keep_incomplete_shard"],
    "NaturalIdPartitioner": ["partition_by"],
    "LinearPartitioner": ["num_partitions"],
    "SquarePartitioner": ["num_partitions"],
    "ExponentialPartitioner": ["num_partitions"],
}

def update_parameter_visibility(partitioner_type):
    required_params = partitioner_parameters.get(partitioner_type, [])
    updates = []
    # For num_partitions_input
    if "num_partitions" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For alpha_input
    if "alpha" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For partition_by_input
    if "partition_by" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For min_partition_size_input
    if "min_partition_size" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For self_balancing_input
    if "self_balancing" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For num_classes_per_partition_input
    if "num_classes_per_partition" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For class_assignment_mode_input
    if "class_assignment_mode" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For num_shards_per_partition_input
    if "num_shards_per_partition" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For shard_size_input
    if "shard_size" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    # For keep_incomplete_shard_input
    if "keep_incomplete_shard" in required_params:
        updates.append(gr.update(visible=True))
    else:
        updates.append(gr.update(visible=False))
    return updates

def partition_and_plot(
    dataset,
    partitioner_type,
    num_partitions,
    alpha,
    partition_by,
    min_partition_size,
    self_balancing,
    num_classes_per_partition,
    class_assignment_mode,
    num_shards_per_partition,
    shard_size,
    keep_incomplete_shard,
    label_name,
    title,
    legend,
    verbose_labels,
    size_unit,
    partition_id_axis,
):
    partitioner_params = {}
    try:
        if partitioner_type == "DirichletPartitioner":
            partitioner_params = {
                "num_partitions": int(num_partitions),
                "partition_by": partition_by,
                "alpha": float(alpha),
                "min_partition_size": int(min_partition_size),
                "self_balancing": self_balancing,
            }
        elif partitioner_type == "IidPartitioner":
            partitioner_params = {
                "num_partitions": int(num_partitions),
            }
        elif partitioner_type == "PathologicalPartitioner":
            partitioner_params = {
                "num_partitions": int(num_partitions),
                "partition_by": partition_by,
                "num_classes_per_partition": int(num_classes_per_partition),
                "class_assignment_mode": class_assignment_mode,
            }
        elif partitioner_type == "ShardPartitioner":
            partitioner_params = {
                "num_partitions": int(num_partitions),
                "partition_by": partition_by,
                "num_shards_per_partition": int(num_shards_per_partition),
                "shard_size": int(shard_size),
                "keep_incomplete_shard": keep_incomplete_shard == "True",
            }
        elif partitioner_type == "NaturalIdPartitioner":
            partitioner_params = {
                "partition_by": partition_by,
            }
        elif partitioner_type in ["LinearPartitioner", "SquarePartitioner", "ExponentialPartitioner"]:
            partitioner_params = {
                "num_partitions": int(num_partitions),
            }

        partitioner_class = partitioner_types[partitioner_type]
        partitioner = partitioner_class(**partitioner_params)
        fds = FederatedDataset(
            dataset=dataset,
            partitioners={
                "train": partitioner,
            },
            trust_remote_code=True,
        )
        partitioner = fds.partitioners["train"]
        figure, axis, dataframe = plot_label_distributions(
            partitioner=partitioner,
            label_name=label_name,
            title=title,
            legend=legend,
            verbose_labels=verbose_labels,
            size_unit=size_unit,
            partition_id_axis=partition_id_axis,
        )

        # Save plot to a file
        plot_filename = "label_distribution.png"
        figure.savefig(plot_filename, bbox_inches='tight')

        # Generate the code
        partitioner_params_str = "\n"
        n_params = len(partitioner_params)
        i = 0
        for k, v in partitioner_params.items():
            if isinstance(v, str):
                v = f'"{v}"'
            if i != (n_params - 1):
                partitioner_params_str = partitioner_params_str + f"\t{k} = {v},\n"    
            else:
                partitioner_params_str = partitioner_params_str + f"\t{k} = {v}\n" 
            i +=1

        code = f"""
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import {partitioner_type}
from flwr_datasets.visualization import plot_label_distributions

partitioner = {partitioner_type}({partitioner_params_str})
fds = FederatedDataset(
    dataset="{dataset}",
    partitioners={{
        "train": partitioner,
    }},
    trust_remote_code=True,
)
partitioner = fds.partitioners["train"]
figure, axis, dataframe = plot_label_distributions(
    partitioner=partitioner,
    label_name="label",
    title="{title}",
    legend={legend},
    verbose_labels={verbose_labels},
    size_unit="{size_unit}",
    partition_id_axis="{partition_id_axis}",
)
    """
        return plot_filename, code#, plot_filename # with df: plot_filename, code, dataframe, plot_filename
    except Exception as e:
        # Return error messages
        error_message = str(e)
        return None, f"Error: {error_message}", None, None

with gr.Blocks() as demo:
    gr.Markdown("# Federated Dataset: Partitioning Visualization")
    gr.Markdown("See partitioned datasets for Federated Learning experiments. The partitioning and visualization were created using `flwr-datasets`. To open in a new tab, click the [link](https://huggingface.co/spaces/flwrlabs/federated-learning-datasets-by-flwr-datasets).")

    with gr.Row():
        with gr.Column(scale=1):
            # gr.Markdown("## Federated Dataset Parameters")
            with gr.Accordion("Federated Dataset Parameters", open=True):
                dataset_input = gr.Textbox(label="Dataset", value="cifar10")
                partitioner_type_input = gr.Dropdown(label="Partitioner", choices=list(partitioner_types.keys()), value="DirichletPartitioner")
                num_partitions_input = gr.Number(label="num_partitions", value=10, visible=True)
                alpha_input = gr.Number(label="alpha", value=0.3, visible=True)
                partition_by_input = gr.Textbox(label="partition_by", value="label", visible=True)
                min_partition_size_input = gr.Number(label="min_partition_size", value=0, visible=True)
                self_balancing_input = gr.Radio(label="self_balancing", choices=[True, False], value=False, visible=True)
    
                num_classes_per_partition_input = gr.Number(label="num_classes_per_partition", value=2, visible=False)
                class_assignment_mode_input = gr.Dropdown(label="class_assignment_mode", choices=["random", "first-deterministic", "deterministic"], value="first-deterministic", visible=False)
                num_shards_per_partition_input = gr.Number(label="num_shards_per_partition", value=2, visible=False)
                shard_size_input = gr.Number(label="shard_size", value=0, visible=False)
                keep_incomplete_shard_input = gr.Radio(label="keep_incomplete_shard", choices=["True", "False"], value="True", visible=False)
            with gr.Accordion("Plot Parameters", open=False):
                label_name = gr.Textbox(label="label_name", value="label")
                title = gr.Textbox(label="title", value="Per Partition Label Distribution")
                # legend_title = gr.Textbox(label="legend_title", value=None)
                legend = gr.Radio(label="legend", choices=[True, False], value=True)
                verbose_labels = gr.Radio(label="verbose_labels", choices=[True, False], value=True)
                size_unit = gr.Radio(label="size_unit", choices=["absolute", "percent"], value="absolute")
                partition_id_axis = gr.Radio(label="partition_id_axis", choices=["x", "y"], value="x")
                
            
            
            # Update parameter visibility when partitioner_type_input changes
            partitioner_type_input.change(
                fn=update_parameter_visibility,
                inputs=[partitioner_type_input],
                outputs=[
                    num_partitions_input,
                    alpha_input,
                    partition_by_input,
                    min_partition_size_input,
                    self_balancing_input,
                    num_classes_per_partition_input,
                    class_assignment_mode_input,
                    num_shards_per_partition_input,
                    shard_size_input,
                    keep_incomplete_shard_input
                ]
            )    
        with gr.Column(scale=3, min_width=480):
            gr.Markdown("## Label Distribution Plot")
            plot_output = gr.Image(label="Label Distribution Plot")
            submit_button = gr.Button("Partition and Plot", variant="primary")
            # download_button = gr.DownloadButton(label="Download Plot", value="label_distribution.png")
            gr.Markdown("## Code")
            code_output = gr.Code(label="Code", language="python")
            # Uncomment to show dataframe (note that it only works with header that is of type "string")
            # gr.Markdown("## Partitioning DataFrame")
            # dataframe_output = gr.Dataframe(label="Partitioning DataFrame")
    size_skew_examples = gr.Examples(
        examples=[
            ["cifar10", "IidPartitioner", 10],
            ["cifar10", "LinearPartitioner", 10],
            ["cifar10", "SquarePartitioner", 10],
            ["cifar10", "ExponentialPartitioner", 10],
        ],
        inputs=[
            dataset_input,
            partitioner_type_input,
            num_partitions_input,
        ],
        label="Size Skew Examples",
    )
    
    dirichlet_examples = gr.Examples(
        examples=[
            ["cifar10", "DirichletPartitioner", 10, 0.1, "label", 0, False, "absolute"],
            ["cifar10", "DirichletPartitioner", 10, 0.1, "label", 0, False, "percent"],
        ],
        inputs=[
            dataset_input,
            partitioner_type_input,
            num_partitions_input,
            alpha_input,
            partition_by_input,
            min_partition_size_input,
            self_balancing_input,
            size_unit,
        ],
        label="Dirichlet Examples",
    )

    pathological_examples = gr.Examples(
        examples=[
            ["cifar10", "PathologicalPartitioner", 10, 2, "first-deterministic", "label"],
            ["cifar10", "PathologicalPartitioner", 10, 3, "deterministic", "label"],
        ],
        inputs=[
            dataset_input,
            partitioner_type_input,
            num_partitions_input,
            num_classes_per_partition_input,
            class_assignment_mode_input,
            partition_by_input,
        ],
        label="Pathological Examples",
    )
    markdown = gr.Markdown("See more tutorial, examples and documentation on [https://flower.ai/docs/datasets/index.html](https://flower.ai/docs/datasets/index.html).")

    # Set up the event handler for the submit_button
    submit_button.click(
        fn=partition_and_plot,
        inputs=[
            dataset_input,
            partitioner_type_input,
            num_partitions_input,
            alpha_input,
            partition_by_input,
            min_partition_size_input,
            self_balancing_input,
            num_classes_per_partition_input,
            class_assignment_mode_input,
            num_shards_per_partition_input,
            shard_size_input,
            keep_incomplete_shard_input,
            label_name,
            title,
            legend,
            verbose_labels,
            size_unit,
            partition_id_axis,
        ],
        outputs=[
            plot_output,
            code_output,
            # dataframe_output,
            # download_button
        ]
    )

if __name__ == "__main__":
    demo.launch()