import gradio as gr import torch from transformers import pipeline from timeit import default_timer as timer username = "fmagot01" ## Complete your username model_id = f"{username}/vit-base-beans" device = "cuda:0" if torch.cuda.is_available() else "cpu" pipe = pipeline("image-classification", model=model_id, device=device) # def predict_trunc(filepath): # preprocessed = pipe.preprocess(filepath) # truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30) # model_outputs = pipe.forward(truncated) # outputs = pipe.postprocess(model_outputs) # return outputs def classify_image(filepath): """ Goes from [{'score': 0.8339303731918335, 'label': 'healthy'}, {'score': 0.11914275586605072, 'label': 'bean_rust'},] to {"health": 0.8339303731918335, "bean_rust":0.11914275586605072} """ start_time = timer() preds = pipe(filepath) outputs = {} pred_time = round(timer() - start_time, 5) for p in preds: outputs[p["label"]] = p["score"] return outputs, pred_time title = "Classifier of Leaf Images" description = """ This demo shows the application of the fintuned image classification model using [Beans](https://huggingface.co/datasets/beans). You can upload your own image or select an image from the examples below. It will output 3 different labels: Healthy, Bean Rust and Angular leaf Spot. Bean rust is a type of disease that leaves can get. Angular leaf spot refers to irregular spots that a leaf can get (not a disease) and healthy leaves do not have any of these. """ filenames = ['leaftest1.jpeg', "leaftest2.jpeg", "leaftest3.jpeg"] filenames = [[f"./{f}"] for f in filenames] demo = gr.Interface( fn=classify_image, inputs=gr.Image(type="filepath"), outputs=[gr.outputs.Label(label="Predictions"), gr.Number(label="Prediction time (s)") ], title=title, description=description, examples=filenames, ) demo.launch()