Commit
·
3a3705f
1
Parent(s):
906ebb4
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,11 @@ from sahi.utils.cv import visualize_object_predictions, read_image
|
|
7 |
from ultralyticsplus import YOLO
|
8 |
|
9 |
def yolov8_inference(
|
10 |
-
|
11 |
-
model_path:
|
12 |
-
image_size:
|
13 |
-
conf_threshold:
|
14 |
-
iou_threshold:
|
15 |
):
|
16 |
"""
|
17 |
YOLOv8 inference function
|
@@ -21,22 +21,15 @@ def yolov8_inference(
|
|
21 |
image_size: Image size
|
22 |
conf_threshold: Confidence threshold
|
23 |
iou_threshold: IOU threshold
|
24 |
-
|
|
|
25 |
"""
|
26 |
-
# Load your model using the specified model_path (You should adjust this part based on your model loading logic)
|
27 |
model = YOLO(model_path)
|
28 |
model.overrides['conf'] = conf_threshold
|
29 |
-
model.overrides['iou']
|
30 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
31 |
-
model.overrides['max_det'] = 1000
|
32 |
-
|
33 |
-
# Preprocess your image as needed (You should adjust this part based on your preprocessing logic)
|
34 |
-
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
35 |
-
image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
|
36 |
-
|
37 |
-
# Perform inference with your model (You should adjust this part based on your inference logic)
|
38 |
-
results = model(image_cv)
|
39 |
-
|
40 |
# Observe results (You should adjust this part based on your result extraction logic)
|
41 |
top_class_index = torch.argmax(results[0].probs).item()
|
42 |
Class1 = model.names[top_class_index]
|
@@ -44,14 +37,15 @@ def yolov8_inference(
|
|
44 |
return Class1
|
45 |
|
46 |
# Define Gradio input and output components
|
|
|
47 |
inputs = [
|
48 |
gr.Image(type="filepath", label="Input Image"),
|
49 |
-
gr.
|
50 |
-
|
51 |
-
gr.Slider(minimum=
|
52 |
-
gr.Slider(minimum=0.0, maximum=1.0, default=0.
|
|
|
53 |
]
|
54 |
-
|
55 |
outputs = gr.Textbox(label="Result")
|
56 |
|
57 |
title = "AI-Powered Tire Quality Inspection: YOLOv8s Enhanced Classification"
|
|
|
7 |
from ultralyticsplus import YOLO
|
8 |
|
9 |
def yolov8_inference(
|
10 |
+
image: gr.Image = None,
|
11 |
+
model_path: gr.Dropdown = None,
|
12 |
+
image_size: gr.Slider = 640,
|
13 |
+
conf_threshold: gr.Slider = 0.25,
|
14 |
+
iou_threshold: gr.Slider = 0.45,
|
15 |
):
|
16 |
"""
|
17 |
YOLOv8 inference function
|
|
|
21 |
image_size: Image size
|
22 |
conf_threshold: Confidence threshold
|
23 |
iou_threshold: IOU threshold
|
24 |
+
Returns:
|
25 |
+
Rendered image
|
26 |
"""
|
|
|
27 |
model = YOLO(model_path)
|
28 |
model.overrides['conf'] = conf_threshold
|
29 |
+
model.overrides['iou']= iou_threshold
|
30 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
31 |
+
model.overrides['max_det'] = 1000
|
32 |
+
image = read_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Observe results (You should adjust this part based on your result extraction logic)
|
34 |
top_class_index = torch.argmax(results[0].probs).item()
|
35 |
Class1 = model.names[top_class_index]
|
|
|
37 |
return Class1
|
38 |
|
39 |
# Define Gradio input and output components
|
40 |
+
|
41 |
inputs = [
|
42 |
gr.Image(type="filepath", label="Input Image"),
|
43 |
+
gr.Dropdown(["foduucom/Tyre-Quality-Classification-AI"],
|
44 |
+
default="foduucom/Tyre-Quality-Classification-AI", label="Model"),
|
45 |
+
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
46 |
+
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
47 |
+
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
48 |
]
|
|
|
49 |
outputs = gr.Textbox(label="Result")
|
50 |
|
51 |
title = "AI-Powered Tire Quality Inspection: YOLOv8s Enhanced Classification"
|