import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO, render_result def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou']= iou_threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 image = read_image(image) results = model.predict(image) render = render_result(model=model, image=image, result=results[0]) return render inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["foduucom/pan-card-detection"], default="foduucom/pan-card-detection", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "pancard : pancard Detection in Images" examples = [['sample/1.jpeg', 'foduucom/pan-card-detection', 640, 0.25, 0.45], ['sample/2.jpg', 'foduucom/pan-card-detection', 640, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)