nehulagrawal commited on
Commit
9424877
β€’
1 Parent(s): d3ad207

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import cv2
4
+ import requests
5
+ import os
6
+
7
+ from ultralyticsplus import YOLO, render_result
8
+
9
+ # Model Heading and Description
10
+ model_heading = "StockMarket: Trends Recognition for Trading Success"
11
+ description = """ πŸ•―οΈ Light up your trading game with Trend prediction! We decode Trends mysteries like trading Sherlock! πŸ•΅οΈβ€β™‚οΈ From 'Down' to 'Up' Trends, we've got patterns covered. Powered by Foduu AI's magic, we'll be your trading Gandalf. Whether you're a trading guru or just starting, we've got your back. πŸ’ΌπŸ’°
12
+ πŸ“ˆ Trading with Trends is like having a secret trading sauce. Curious? Reach out at [email protected] and unveil the magic! Liking us won't give you superpowers, but it's a step towards trading wizardry! πŸš€πŸ‘πŸ•―οΈ
13
+ πŸ“§ Contact us: [email protected]
14
+ πŸ‘ Like | Join the Trading Adventure!"""
15
+
16
+ image_path= [['test/test1.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/foduucom/stockmarket-future-prediction', 640, 0.25, 0.45],['test/test3.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45]]
17
+
18
+ # Load YOLO model
19
+ model = YOLO('foduucom/stockmarket-future-prediction')
20
+
21
+ #############################################################Image Inference############################################################
22
+ def yolov8_img_inference(
23
+ image: gr.inputs.Image = None,
24
+ model_path: gr.inputs.Dropdown = None,
25
+ image_size: gr.inputs.Slider = 640,
26
+ conf_threshold: gr.inputs.Slider = 0.25,
27
+ iou_threshold: gr.inputs.Slider = 0.45,
28
+ ):
29
+ """
30
+ YOLOv8 inference function
31
+ Args:
32
+ image: Input image
33
+ model_path: Path to the model
34
+ image_size: Image size
35
+ conf_threshold: Confidence threshold
36
+ iou_threshold: IOU threshold
37
+ Returns:
38
+ Rendered image
39
+ """
40
+ model = YOLO(model_path)
41
+ model.overrides['conf'] = conf_threshold
42
+ model.overrides['iou']= iou_threshold
43
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
44
+ model.overrides['max_det'] = 1000
45
+ # image = read_image(image)
46
+ results = model.predict(image)
47
+ render = render_result(model=model, image=image, result=results[0])
48
+
49
+ return render
50
+
51
+
52
+ inputs_image = [
53
+ gr.inputs.Image(type="filepath", label="Input Image"),
54
+ gr.inputs.Dropdown(["foduucom/stockmarket-future-prediction"],
55
+ default="foduucom/stockmarket-future-prediction", label="Model"),
56
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
57
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
58
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
59
+ ]
60
+
61
+ outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
62
+ interface_image = gr.Interface(
63
+ fn=yolov8_img_inference,
64
+ inputs=inputs_image,
65
+ outputs=outputs_image,
66
+ title=model_heading,
67
+ description=description,
68
+ examples=image_path,
69
+ cache_examples=False,
70
+ theme='huggingface'
71
+ )
72
+
73
+ ##################################################Video Inference################################################################
74
+ def show_preds_video(
75
+ video_path: str = None,
76
+ model_path: str = None,
77
+ image_size: int = 640,
78
+ conf_threshold: float = 0.25,
79
+ iou_threshold: float = 0.45,
80
+ ):
81
+ cap = cv2.VideoCapture(video_path)
82
+
83
+ while cap.isOpened():
84
+ success, frame = cap.read()
85
+
86
+ if success:
87
+ model = YOLO(model_path)
88
+ model.overrides['conf'] = conf_threshold
89
+ model.overrides['iou'] = iou_threshold
90
+ model.overrides['agnostic_nms'] = False
91
+ model.overrides['max_det'] = 1000
92
+ results = model.predict(frame)
93
+ annotated_frame = results[0].plot()
94
+
95
+ # Do not display the frame using cv2.imshow
96
+ # cv2.imshow("YOLOv8 Inference", annotated_frame)
97
+
98
+ # Break the loop if 'q' is pressed
99
+ if cv2.waitKey(1) & 0xFF == ord("q"):
100
+ break
101
+ else:
102
+ break
103
+
104
+ cap.release()
105
+ cv2.destroyAllWindows()
106
+
107
+
108
+ inputs_video = [
109
+ gr.components.Video(type="filepath", label="Input Video"),
110
+ gr.inputs.Dropdown(["foduucom/stockmarket-future-prediction"],
111
+ default="foduucom/stockmarket-future-prediction", label="Model"),
112
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
113
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
114
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
115
+
116
+ ]
117
+ outputs_video = gr.outputs.Image(type="filepath", label="Output Video")
118
+ video_path=[['test/testvideo.mp4','foduucom/stockmarket-future-prediction', 640, 0.25, 0.45]]
119
+ interface_video = gr.Interface(
120
+ fn=show_preds_video,
121
+ inputs=inputs_video,
122
+ outputs=outputs_video,
123
+ title=model_heading,
124
+ description=description,
125
+ examples=video_path,
126
+ cache_examples=False,
127
+ theme='huggingface'
128
+ )
129
+
130
+ gr.TabbedInterface(
131
+ [interface_image, interface_video],
132
+ tab_names=['Image inference', 'Video inference']
133
+ ).queue().launch()
134
+