import gradio as gr from gradio import components as gc import cv2 import requests import os from ultralyticsplus import YOLO, render_result # Model Heading and Description model_heading = "StockMarket: Trends Recognition for Trading Success" description = """ 🌟 Elevate Your Trading Odyssey with Trend Predictions! 🌟 Dive deep into the enigma of market trends with the precision of a seasoned detective. 🕵️‍♂️ With Foduu AI's unparalleled insights, transition seamlessly from bearish 'Downs' to bullish 'Ups'. 📉📈 Consider us your trading compass, guiding you through the financial wilderness like a modern-day Gandalf. 🧙‍♂️ Whether you're a seasoned trader or just embarking on your journey, we're here to illuminate your path. 💡 Trading with us? It's like possessing the secret recipe to investment success. 🍲💰 Intrigued? Dive into the world of trading alchemy! 🌌 💌 Reach Out: info@foddu.com 👍 Give us a thumbs up and embark on an unparalleled trading escapade! No, you won't gain superpowers, but you'll be one step closer to mastering the markets! 🚀🌍📊!""" image_path= [['test/1.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45], ['test/2.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45],['test/3.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45]] # Load YOLO model model = YOLO("foduucom/stockmarket-future-prediction") def yolov8_img_inference( image: gc.Image = None, model_path: str = "foduucom/stockmarket-future-prediction", image_size: gc.Slider = 640, conf_threshold: gc.Slider = 0.25, iou_threshold: gc.Slider = 0.45 ): model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou'] = iou_threshold model.overrides['agnostic_nms'] = False model.overrides['max_det'] = 1000 results = model.predict(image) render = render_result(model=model, image=image, result=results[0]) return render inputs_image = [ gc.Image(type="filepath", label="Input Image"), gc.Dropdown(["foduucom/stockmarket-future-prediction"], default="foduucom/stockmarket-future-prediction", label="Model"), gc.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gc.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gc.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs_image = gc.Image(type="filepath", label="Output Image") interface_image = gr.Interface( fn=yolov8_img_inference, inputs=inputs_image, outputs=outputs_image, title=model_heading, description=description, examples=image_path, cache_examples=False, theme='huggingface' ) interface_image.queue() interface_image.launch(debug=True)