Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,73 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Fine-Tuned Medical Language Model
|
13 |
+
|
14 |
+
## Overview
|
15 |
+
This project fine-tunes the LLaMA 3.2 3B model using the **FineTome-100k** instruction dataset. The goal is to develop a performant language model for medical instruction tasks, optimized for inference on CPU.
|
16 |
+
|
17 |
+
## Key Features
|
18 |
+
- **Base Model**: LLaMA 3.2 3B (fine-tuned with Hugging Face Transformers and Unsloth).
|
19 |
+
- **Dataset**: FineTome-100k, a high-quality instruction dataset.
|
20 |
+
- **Inference Optimization**: Quantized to GGUF format for faster CPU inference using methods like Q4_K_M.
|
21 |
+
|
22 |
+
## Improvements
|
23 |
+
### Model-Centric Approach
|
24 |
+
1. **Hyperparameter Tuning**:
|
25 |
+
- **Learning Rate**: Reduced to `1e-4` and tested against `2e-4` for better generalization.
|
26 |
+
- **Warmup Steps**: Increased to 100 to stabilize early training.
|
27 |
+
- **Batch Size**: Adjusted via gradient accumulation to simulate larger effective batch sizes.
|
28 |
+
|
29 |
+
2. **Fine-Tuning Techniques**:
|
30 |
+
- Resumed training from a 3,000-step checkpoint to save time.
|
31 |
+
- Applied `adamw_8bit` optimizer for memory-efficient training.
|
32 |
+
|
33 |
+
3. **Experimentation with Foundation Models**:
|
34 |
+
- Tested alternative open-source models, including Falcon-7B and Mistral 3B, for comparison.
|
35 |
+
|
36 |
+
### Data-Centric Approach
|
37 |
+
1. **Additional Data Sources**:
|
38 |
+
- Plans to augment training with datasets like PubMedQA or MedQA for domain-specific improvements.
|
39 |
+
- Diversity of instructions to improve robustness across medical queries.
|
40 |
+
|
41 |
+
2. **Dataset Analysis**:
|
42 |
+
- Addressed class imbalances and ensured validation split consistency.
|
43 |
+
|
44 |
+
## Hyperparameters
|
45 |
+
The final training used the following hyperparameters:
|
46 |
+
- **Learning Rate**: 1e-4
|
47 |
+
- **Warmup Steps**: 100
|
48 |
+
- **Batch Size**: Simulated effective batch size of 8 (2 samples per device with 4 gradient accumulation steps).
|
49 |
+
- **Optimizer**: AdamW (8-bit quantization).
|
50 |
+
- **Weight Decay**: 0.01
|
51 |
+
- **Learning Rate Scheduler**: Linear decay.
|
52 |
+
|
53 |
+
## Model Performance
|
54 |
+
### Training
|
55 |
+
- **Steps**: Fine-tuned for 6,000 steps total (3,000 initial + 3,000 resumed).
|
56 |
+
- **Validation Loss**: Improved from X to Y during fine-tuning.
|
57 |
+
|
58 |
+
### Inference
|
59 |
+
- **Quantized Format**: Q4_K_M and F16 formats evaluated for inference speed.
|
60 |
+
- **CPU Latency**: Achieved X ms per query on a single-core CPU.
|
61 |
+
|
62 |
+
## Next Steps
|
63 |
+
1. Continue fine-tuning with additional data sources (e.g., MedQA).
|
64 |
+
2. Explore LoRA or parameter-efficient tuning for larger models.
|
65 |
+
3. Deploy and evaluate the model in real-world scenarios.
|
66 |
+
|
67 |
+
## Usage
|
68 |
+
To load and use the model:
|
69 |
+
```python
|
70 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
71 |
+
|
72 |
+
model_name = "forestav/medical_model"
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
75 |
+
|
76 |
+
# Generate predictions
|
77 |
+
inputs = tokenizer("What are the symptoms of diabetes?", return_tensors="pt")
|
78 |
+
outputs = model.generate(**inputs)
|
79 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
80 |
+
|
81 |
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|