Filip
commited on
Commit
·
c5c8f7b
1
Parent(s):
ab546a4
update
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
-
import json
|
5 |
-
import re
|
6 |
|
7 |
def load_model():
|
8 |
repo_id = "forestav/gguf_lora_model"
|
@@ -23,112 +21,113 @@ def load_model():
|
|
23 |
|
24 |
return model
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
elif mode == 'analytical':
|
34 |
-
system_prompt = "You are an analytical assistant. Provide deep, structured insights and reasoning."
|
35 |
-
else:
|
36 |
-
system_prompt = "You are a helpful AI assistant."
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
messages = [
|
40 |
{"role": "system", "content": system_prompt},
|
41 |
-
|
42 |
-
for i, msg in enumerate(sum(history, []))],
|
43 |
-
{"role": "user", "content": message}
|
44 |
]
|
45 |
|
46 |
# Generate response
|
47 |
response = model.create_chat_completion(
|
48 |
messages=messages,
|
49 |
-
max_tokens=
|
50 |
temperature=0.7,
|
51 |
top_p=0.95,
|
52 |
)
|
53 |
|
54 |
return response['choices'][0]['message']['content']
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
json_match = re.search(r'\{.*\}', text, re.DOTALL)
|
61 |
-
if json_match:
|
62 |
-
try:
|
63 |
-
return json.loads(json_match.group(0))
|
64 |
-
except json.JSONDecodeError:
|
65 |
-
pass
|
66 |
-
|
67 |
-
# Fall back to custom parsing for key-value pairs
|
68 |
-
data = {}
|
69 |
-
for line in text.split('\n'):
|
70 |
-
if ':' in line:
|
71 |
-
key, value = line.split(':', 1)
|
72 |
-
data[key.strip()] = value.strip()
|
73 |
-
|
74 |
-
return data
|
75 |
-
except Exception as e:
|
76 |
-
return {"error": str(e)}
|
77 |
|
78 |
-
# Create Gradio interface
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
extract_btn = gr.Button("Extract Structured Data")
|
113 |
-
json_output = gr.JSON(label="Extracted Data")
|
114 |
-
|
115 |
-
extract_btn.click(
|
116 |
-
fn=extract_structured_data,
|
117 |
-
inputs=text_input,
|
118 |
-
outputs=json_output
|
119 |
-
)
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
#
|
129 |
-
demo = create_interface()
|
130 |
demo.launch(
|
131 |
-
server_name="0.0.0.0",
|
132 |
-
server_port=7860,
|
133 |
-
share=
|
134 |
)
|
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
4 |
|
5 |
def load_model():
|
6 |
repo_id = "forestav/gguf_lora_model"
|
|
|
21 |
|
22 |
return model
|
23 |
|
24 |
+
def generate_instructions(input_text, instruction_type, complexity, audience):
|
25 |
+
# Craft a comprehensive system prompt
|
26 |
+
system_prompt = f"""You are an expert at creating clear, precise instructions.
|
27 |
+
Generate instructions that are:
|
28 |
+
- Type: {instruction_type}
|
29 |
+
- Complexity Level: {complexity}
|
30 |
+
- Target Audience: {audience}
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
Core Input Context: {input_text}
|
33 |
+
|
34 |
+
Guidelines:
|
35 |
+
- Use clear, step-by-step language
|
36 |
+
- Ensure instructions are actionable and specific
|
37 |
+
- Include safety warnings or prerequisites if relevant
|
38 |
+
- Adapt complexity to the specified audience level"""
|
39 |
+
|
40 |
+
# Prepare messages for instruction generation
|
41 |
messages = [
|
42 |
{"role": "system", "content": system_prompt},
|
43 |
+
{"role": "user", "content": f"Please generate comprehensive instructions for: {input_text}"}
|
|
|
|
|
44 |
]
|
45 |
|
46 |
# Generate response
|
47 |
response = model.create_chat_completion(
|
48 |
messages=messages,
|
49 |
+
max_tokens=1024,
|
50 |
temperature=0.7,
|
51 |
top_p=0.95,
|
52 |
)
|
53 |
|
54 |
return response['choices'][0]['message']['content']
|
55 |
|
56 |
+
# Load model globally
|
57 |
+
print("Starting model loading...")
|
58 |
+
model = load_model()
|
59 |
+
print("Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# Create Gradio interface
|
62 |
+
demo = gr.Blocks(title="Instruction Craft AI")
|
63 |
+
|
64 |
+
with demo:
|
65 |
+
gr.Markdown("# 📝 Instruction Crafting Assistant")
|
66 |
+
gr.Markdown("Generate precise, tailored instructions for any task or process.")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
input_text = gr.Textbox(label="Describe the task or process")
|
71 |
+
|
72 |
+
instruction_type = gr.Dropdown(
|
73 |
+
label="Instruction Type",
|
74 |
+
choices=[
|
75 |
+
"How-to Guide",
|
76 |
+
"Technical Manual",
|
77 |
+
"Safety Procedure",
|
78 |
+
"Educational Tutorial",
|
79 |
+
"Cooking Recipe",
|
80 |
+
"DIY Project",
|
81 |
+
"Professional Workflow"
|
82 |
+
]
|
83 |
+
)
|
84 |
|
85 |
+
complexity = gr.Dropdown(
|
86 |
+
label="Complexity Level",
|
87 |
+
choices=[
|
88 |
+
"Beginner",
|
89 |
+
"Intermediate",
|
90 |
+
"Advanced",
|
91 |
+
"Expert"
|
92 |
+
]
|
93 |
+
)
|
94 |
|
95 |
+
audience = gr.Dropdown(
|
96 |
+
label="Target Audience",
|
97 |
+
choices=[
|
98 |
+
"Children",
|
99 |
+
"Students",
|
100 |
+
"General Public",
|
101 |
+
"Professionals",
|
102 |
+
"Experts"
|
103 |
+
]
|
104 |
+
)
|
105 |
|
106 |
+
generate_btn = gr.Button("Craft Instructions", variant="primary")
|
107 |
+
|
108 |
+
with gr.Column():
|
109 |
+
output_text = gr.Textbox(label="Generated Instructions", lines=20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
generate_btn.click(
|
112 |
+
fn=generate_instructions,
|
113 |
+
inputs=[input_text, instruction_type, complexity, audience],
|
114 |
+
outputs=output_text
|
115 |
+
)
|
116 |
|
117 |
+
# Add some example inputs
|
118 |
+
demo.load(
|
119 |
+
fn=lambda: {
|
120 |
+
input_text: "Change a car tire",
|
121 |
+
instruction_type: "How-to Guide",
|
122 |
+
complexity: "Intermediate",
|
123 |
+
audience: "General Public"
|
124 |
+
},
|
125 |
+
outputs=[input_text, instruction_type, complexity, audience]
|
126 |
+
)
|
127 |
|
128 |
+
# Launch the interface
|
|
|
129 |
demo.launch(
|
130 |
+
server_name="0.0.0.0",
|
131 |
+
server_port=7860,
|
132 |
+
share=False
|
133 |
)
|