Filip commited on
Commit
8db6502
·
1 Parent(s): 4e33cf2
Files changed (2) hide show
  1. .gitignore +1 -0
  2. app.py +185 -60
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .gradio
app.py CHANGED
@@ -1,64 +1,189 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from huggingface_hub import hf_hub_download
4
+ from llama_cpp import Llama
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Model configuration
7
+ REPO_ID = "forestav/medical_model"
8
+ MODEL_FILE = "unsloth.F16.gguf"
9
 
10
+ def download_model():
11
+ """
12
+ Download the model from Hugging Face Hub if not already present
13
+ """
14
+ try:
15
+ model_path = hf_hub_download(
16
+ repo_id=REPO_ID,
17
+ filename=MODEL_FILE,
18
+ resume_download=True,
19
+ force_filename=MODEL_FILE
20
+ )
21
+ return model_path
22
+ except Exception as e:
23
+ print(f"Error downloading model: {e}")
24
+ return None
25
+
26
+ def load_model(model_path):
27
+ """
28
+ Load the GGUF model using llama_cpp
29
+ """
30
+ try:
31
+ model = Llama(
32
+ model_path=model_path,
33
+ n_ctx=4096, # Adjust context window as needed
34
+ n_batch=512, # Batch size for prompt processing
35
+ verbose=False # Set to True for detailed loading info
36
+ )
37
+ return model
38
+ except Exception as e:
39
+ print(f"Error loading model: {e}")
40
+ return None
41
+
42
+ def generate_medical_response(model, prompt, max_tokens=300):
43
+ """
44
+ Generate a medical advice response using the loaded model
45
+ """
46
+ try:
47
+ # Prepare the prompt with a medical context
48
+ full_prompt = f"You are a helpful medical AI assistant providing professional medical advice. Respond professionally and carefully:\n\n{prompt}"
49
+
50
+ # Generate response
51
+ output = model.create_chat_completion(
52
+ messages=[
53
+ {"role": "system", "content": "You are a professional medical AI assistant."},
54
+ {"role": "user", "content": prompt}
55
+ ],
56
+ max_tokens=max_tokens,
57
+ temperature=0.7,
58
+ top_p=0.9
59
+ )
60
+
61
+ # Extract and return the response text
62
+ return output['choices'][0]['message']['content']
63
+ except Exception as e:
64
+ return f"An error occurred while generating a response: {e}"
65
+
66
+ def medical_chatbot_interface(message, history):
67
+ """
68
+ Gradio interface function for the medical chatbot
69
+ """
70
+ # Ensure model is loaded
71
+ if not hasattr(medical_chatbot_interface, 'model'):
72
+ model_path = download_model()
73
+ if not model_path:
74
+ return "Failed to download model"
75
+
76
+ medical_chatbot_interface.model = load_model(model_path)
77
+ if not medical_chatbot_interface.model:
78
+ return "Failed to load model"
79
+
80
+ # Generate response
81
+ response = generate_medical_response(medical_chatbot_interface.model, message)
82
+ return response
83
+
84
+ # Create Gradio interface with modern, professional medical-themed UI
85
+ def create_medical_chatbot_ui():
86
+ # Modern, professional medical-themed CSS
87
+ modern_medical_css = """
88
+ :root {
89
+ --primary-color: #2c7da0;
90
+ --secondary-color: #468faf;
91
+ --background-color: #f8fbfd;
92
+ --text-color: #333;
93
+ --card-background: #ffffff;
94
+ }
95
+
96
+ body {
97
+ font-family: 'Inter', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
98
+ background-color: var(--background-color);
99
+ color: var(--text-color);
100
+ line-height: 1.6;
101
+ }
102
+
103
+ .gradio-container {
104
+ background-color: var(--background-color);
105
+ max-width: 800px;
106
+ margin: 0 auto;
107
+ padding: 20px;
108
+ border-radius: 12px;
109
+ box-shadow: 0 10px 25px rgba(0, 0, 0, 0.05);
110
+ }
111
+
112
+ .chatbot-container {
113
+ background-color: var(--card-background);
114
+ border-radius: 12px;
115
+ border: 1px solid rgba(44, 125, 160, 0.1);
116
+ overflow: hidden;
117
+ }
118
+
119
+ .message-input {
120
+ border: 2px solid var(--primary-color);
121
+ border-radius: 8px;
122
+ padding: 12px;
123
+ font-size: 16px;
124
+ transition: all 0.3s ease;
125
+ }
126
+
127
+ .message-input:focus {
128
+ outline: none;
129
+ border-color: var(--secondary-color);
130
+ box-shadow: 0 0 0 3px rgba(44, 125, 160, 0.1);
131
+ }
132
+
133
+ .submit-button {
134
+ background-color: var(--primary-color);
135
+ color: white;
136
+ border: none;
137
+ border-radius: 8px;
138
+ padding: 12px 20px;
139
+ font-weight: 600;
140
+ transition: all 0.3s ease;
141
+ }
142
+
143
+ .submit-button:hover {
144
+ background-color: var(--secondary-color);
145
+ }
146
+
147
+ /* Chat message styling */
148
+ .message {
149
+ max-width: 80%;
150
+ margin: 10px 0;
151
+ padding: 12px 16px;
152
+ border-radius: 12px;
153
+ line-height: 1.5;
154
+ }
155
+
156
+ .user-message {
157
+ background-color: var(--primary-color);
158
+ color: white;
159
+ align-self: flex-end;
160
+ margin-left: auto;
161
+ }
162
+
163
+ .bot-message {
164
+ background-color: #f0f4f8;
165
+ color: var(--text-color);
166
+ align-self: flex-start;
167
+ }
168
+ """
169
+
170
+ # Create Gradio interface with modern design
171
+ demo = gr.ChatInterface(
172
+ fn=medical_chatbot_interface,
173
+ title="🩺 MediAssist: AI Health Companion",
174
+ description="Get professional medical insights and guidance. Always consult a healthcare professional for personalized medical advice. 🌡️",
175
+ theme='soft',
176
+ css=modern_medical_css
177
+ )
178
+
179
+ return demo
180
+
181
+ # Launch the app
182
  if __name__ == "__main__":
183
+ # Create and launch the Gradio app
184
+ medical_chatbot = create_medical_chatbot_ui()
185
+ medical_chatbot.launch(
186
+ server_name="0.0.0.0", # Make accessible outside the local machine
187
+ server_port=7860,
188
+ share=False # Generate a public link
189
+ )