File size: 5,237 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
from dataclasses import dataclass, field

import draccus

from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.configs.types import FeatureType, PolicyFeature


@dataclass
class EnvConfig(draccus.ChoiceRegistry, abc.ABC):
    task: str | None = None
    fps: int = 30
    features: dict[str, PolicyFeature] = field(default_factory=dict)
    features_map: dict[str, str] = field(default_factory=dict)

    @property
    def type(self) -> str:
        return self.get_choice_name(self.__class__)

    @abc.abstractproperty
    def gym_kwargs(self) -> dict:
        raise NotImplementedError()


@EnvConfig.register_subclass("aloha")
@dataclass
class AlohaEnv(EnvConfig):
    task: str = "AlohaInsertion-v0"
    fps: int = 50
    episode_length: int = 400
    obs_type: str = "pixels_agent_pos"
    render_mode: str = "rgb_array"
    features: dict[str, PolicyFeature] = field(
        default_factory=lambda: {
            "action": PolicyFeature(type=FeatureType.ACTION, shape=(14,)),
        }
    )
    features_map: dict[str, str] = field(
        default_factory=lambda: {
            "action": ACTION,
            "agent_pos": OBS_ROBOT,
            "top": f"{OBS_IMAGE}.top",
            "pixels/top": f"{OBS_IMAGES}.top",
        }
    )

    def __post_init__(self):
        if self.obs_type == "pixels":
            self.features["top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
        elif self.obs_type == "pixels_agent_pos":
            self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(14,))
            self.features["pixels/top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))

    @property
    def gym_kwargs(self) -> dict:
        return {
            "obs_type": self.obs_type,
            "render_mode": self.render_mode,
            "max_episode_steps": self.episode_length,
        }


@EnvConfig.register_subclass("pusht")
@dataclass
class PushtEnv(EnvConfig):
    task: str = "PushT-v0"
    fps: int = 10
    episode_length: int = 300
    obs_type: str = "pixels_agent_pos"
    render_mode: str = "rgb_array"
    visualization_width: int = 384
    visualization_height: int = 384
    features: dict[str, PolicyFeature] = field(
        default_factory=lambda: {
            "action": PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
            "agent_pos": PolicyFeature(type=FeatureType.STATE, shape=(2,)),
        }
    )
    features_map: dict[str, str] = field(
        default_factory=lambda: {
            "action": ACTION,
            "agent_pos": OBS_ROBOT,
            "environment_state": OBS_ENV,
            "pixels": OBS_IMAGE,
        }
    )

    def __post_init__(self):
        if self.obs_type == "pixels_agent_pos":
            self.features["pixels"] = PolicyFeature(type=FeatureType.VISUAL, shape=(384, 384, 3))
        elif self.obs_type == "environment_state_agent_pos":
            self.features["environment_state"] = PolicyFeature(type=FeatureType.ENV, shape=(16,))

    @property
    def gym_kwargs(self) -> dict:
        return {
            "obs_type": self.obs_type,
            "render_mode": self.render_mode,
            "visualization_width": self.visualization_width,
            "visualization_height": self.visualization_height,
            "max_episode_steps": self.episode_length,
        }


@EnvConfig.register_subclass("xarm")
@dataclass
class XarmEnv(EnvConfig):
    task: str = "XarmLift-v0"
    fps: int = 15
    episode_length: int = 200
    obs_type: str = "pixels_agent_pos"
    render_mode: str = "rgb_array"
    visualization_width: int = 384
    visualization_height: int = 384
    features: dict[str, PolicyFeature] = field(
        default_factory=lambda: {
            "action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
            "pixels": PolicyFeature(type=FeatureType.VISUAL, shape=(84, 84, 3)),
        }
    )
    features_map: dict[str, str] = field(
        default_factory=lambda: {
            "action": ACTION,
            "agent_pos": OBS_ROBOT,
            "pixels": OBS_IMAGE,
        }
    )

    def __post_init__(self):
        if self.obs_type == "pixels_agent_pos":
            self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(4,))

    @property
    def gym_kwargs(self) -> dict:
        return {
            "obs_type": self.obs_type,
            "render_mode": self.render_mode,
            "visualization_width": self.visualization_width,
            "visualization_height": self.visualization_height,
            "max_episode_steps": self.episode_length,
        }