File size: 12,326 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python

# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field

from lerobot.common.optim.optimizers import AdamConfig
from lerobot.common.optim.schedulers import DiffuserSchedulerConfig
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import NormalizationMode


@PreTrainedConfig.register_subclass("diffusion")
@dataclass
class DiffusionConfig(PreTrainedConfig):
    """Configuration class for DiffusionPolicy.

    Defaults are configured for training with PushT providing proprioceptive and single camera observations.

    The parameters you will most likely need to change are the ones which depend on the environment / sensors.
    Those are: `input_shapes` and `output_shapes`.

    Notes on the inputs and outputs:
        - "observation.state" is required as an input key.
        - Either:
            - At least one key starting with "observation.image is required as an input.
              AND/OR
            - The key "observation.environment_state" is required as input.
        - If there are multiple keys beginning with "observation.image" they are treated as multiple camera
          views. Right now we only support all images having the same shape.
        - "action" is required as an output key.

    Args:
        n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
            current step and additional steps going back).
        horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`.
        n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
            See `DiffusionPolicy.select_action` for more details.
        input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
            the input data name, and the value is a list indicating the dimensions of the corresponding data.
            For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
            indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
            include batch dimension or temporal dimension.
        output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
            the output data name, and the value is a list indicating the dimensions of the corresponding data.
            For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
            Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
        input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
            and the value specifies the normalization mode to apply. The two available modes are "mean_std"
            which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
            [-1, 1] range.
        output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
            original scale. Note that this is also used for normalizing the training targets.
        vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
        crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
            within the image size. If None, no cropping is done.
        crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
            mode).
        pretrained_backbone_weights: Pretrained weights from torchvision to initialize the backbone.
            `None` means no pretrained weights.
        use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
            The group sizes are set to be about 16 (to be precise, feature_dim // 16).
        spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
        use_separate_rgb_encoders_per_camera: Whether to use a separate RGB encoder for each camera view.
        down_dims: Feature dimension for each stage of temporal downsampling in the diffusion modeling Unet.
            You may provide a variable number of dimensions, therefore also controlling the degree of
            downsampling.
        kernel_size: The convolutional kernel size of the diffusion modeling Unet.
        n_groups: Number of groups used in the group norm of the Unet's convolutional blocks.
        diffusion_step_embed_dim: The Unet is conditioned on the diffusion timestep via a small non-linear
            network. This is the output dimension of that network, i.e., the embedding dimension.
        use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
            Bias modulation is used be default, while this parameter indicates whether to also use scale
            modulation.
        noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].
        num_train_timesteps: Number of diffusion steps for the forward diffusion schedule.
        beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers.
        beta_start: Beta value for the first forward-diffusion step.
        beta_end: Beta value for the last forward-diffusion step.
        prediction_type: The type of prediction that the diffusion modeling Unet makes. Choose from "epsilon"
            or "sample". These have equivalent outcomes from a latent variable modeling perspective, but
            "epsilon" has been shown to work better in many deep neural network settings.
        clip_sample: Whether to clip the sample to [-`clip_sample_range`, +`clip_sample_range`] for each
            denoising step at inference time. WARNING: you will need to make sure your action-space is
            normalized to fit within this range.
        clip_sample_range: The magnitude of the clipping range as described above.
        num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly
            spaced). If not provided, this defaults to be the same as `num_train_timesteps`.
        do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See
            `LeRobotDataset` and `load_previous_and_future_frames` for more information. Note, this defaults
            to False as the original Diffusion Policy implementation does the same.
    """

    # Inputs / output structure.
    n_obs_steps: int = 2
    horizon: int = 16
    n_action_steps: int = 8

    normalization_mapping: dict[str, NormalizationMode] = field(
        default_factory=lambda: {
            "VISUAL": NormalizationMode.MEAN_STD,
            "STATE": NormalizationMode.MIN_MAX,
            "ACTION": NormalizationMode.MIN_MAX,
        }
    )

    # The original implementation doesn't sample frames for the last 7 steps,
    # which avoids excessive padding and leads to improved training results.
    drop_n_last_frames: int = 7  # horizon - n_action_steps - n_obs_steps + 1

    # Architecture / modeling.
    # Vision backbone.
    vision_backbone: str = "resnet18"
    crop_shape: tuple[int, int] | None = (84, 84)
    crop_is_random: bool = True
    pretrained_backbone_weights: str | None = None
    use_group_norm: bool = True
    spatial_softmax_num_keypoints: int = 32
    use_separate_rgb_encoder_per_camera: bool = False
    # Unet.
    down_dims: tuple[int, ...] = (512, 1024, 2048)
    kernel_size: int = 5
    n_groups: int = 8
    diffusion_step_embed_dim: int = 128
    use_film_scale_modulation: bool = True
    # Noise scheduler.
    noise_scheduler_type: str = "DDPM"
    num_train_timesteps: int = 100
    beta_schedule: str = "squaredcos_cap_v2"
    beta_start: float = 0.0001
    beta_end: float = 0.02
    prediction_type: str = "epsilon"
    clip_sample: bool = True
    clip_sample_range: float = 1.0

    # Inference
    num_inference_steps: int | None = None

    # Loss computation
    do_mask_loss_for_padding: bool = False

    # Training presets
    optimizer_lr: float = 1e-4
    optimizer_betas: tuple = (0.95, 0.999)
    optimizer_eps: float = 1e-8
    optimizer_weight_decay: float = 1e-6
    scheduler_name: str = "cosine"
    scheduler_warmup_steps: int = 500

    def __post_init__(self):
        super().__post_init__()

        """Input validation (not exhaustive)."""
        if not self.vision_backbone.startswith("resnet"):
            raise ValueError(
                f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
            )

        supported_prediction_types = ["epsilon", "sample"]
        if self.prediction_type not in supported_prediction_types:
            raise ValueError(
                f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}."
            )
        supported_noise_schedulers = ["DDPM", "DDIM"]
        if self.noise_scheduler_type not in supported_noise_schedulers:
            raise ValueError(
                f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
                f"Got {self.noise_scheduler_type}."
            )

        # Check that the horizon size and U-Net downsampling is compatible.
        # U-Net downsamples by 2 with each stage.
        downsampling_factor = 2 ** len(self.down_dims)
        if self.horizon % downsampling_factor != 0:
            raise ValueError(
                "The horizon should be an integer multiple of the downsampling factor (which is determined "
                f"by `len(down_dims)`). Got {self.horizon=} and {self.down_dims=}"
            )

    def get_optimizer_preset(self) -> AdamConfig:
        return AdamConfig(
            lr=self.optimizer_lr,
            betas=self.optimizer_betas,
            eps=self.optimizer_eps,
            weight_decay=self.optimizer_weight_decay,
        )

    def get_scheduler_preset(self) -> DiffuserSchedulerConfig:
        return DiffuserSchedulerConfig(
            name=self.scheduler_name,
            num_warmup_steps=self.scheduler_warmup_steps,
        )

    def validate_features(self) -> None:
        if len(self.image_features) == 0 and self.env_state_feature is None:
            raise ValueError("You must provide at least one image or the environment state among the inputs.")

        if self.crop_shape is not None:
            for key, image_ft in self.image_features.items():
                if self.crop_shape[0] > image_ft.shape[1] or self.crop_shape[1] > image_ft.shape[2]:
                    raise ValueError(
                        f"`crop_shape` should fit within the images shapes. Got {self.crop_shape} "
                        f"for `crop_shape` and {image_ft.shape} for "
                        f"`{key}`."
                    )

        # Check that all input images have the same shape.
        first_image_key, first_image_ft = next(iter(self.image_features.items()))
        for key, image_ft in self.image_features.items():
            if image_ft.shape != first_image_ft.shape:
                raise ValueError(
                    f"`{key}` does not match `{first_image_key}`, but we expect all image shapes to match."
                )

    @property
    def observation_delta_indices(self) -> list:
        return list(range(1 - self.n_obs_steps, 1))

    @property
    def action_delta_indices(self) -> list:
        return list(range(1 - self.n_obs_steps, 1 - self.n_obs_steps + self.horizon))

    @property
    def reward_delta_indices(self) -> None:
        return None