File size: 12,578 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from torch import Tensor, nn

from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature


def create_stats_buffers(
    features: dict[str, PolicyFeature],
    norm_map: dict[str, NormalizationMode],
    stats: dict[str, dict[str, Tensor]] | None = None,
) -> dict[str, dict[str, nn.ParameterDict]]:
    """
    Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max
    statistics.

    Args: (see Normalize and Unnormalize)

    Returns:
        dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing
            `nn.Parameters` set to `requires_grad=False`, suitable to not be updated during backpropagation.
    """
    stats_buffers = {}

    for key, ft in features.items():
        norm_mode = norm_map.get(ft.type, NormalizationMode.IDENTITY)
        if norm_mode is NormalizationMode.IDENTITY:
            continue

        assert isinstance(norm_mode, NormalizationMode)

        shape = tuple(ft.shape)

        if ft.type is FeatureType.VISUAL:
            # sanity checks
            assert len(shape) == 3, f"number of dimensions of {key} != 3 ({shape=}"
            c, h, w = shape
            assert c < h and c < w, f"{key} is not channel first ({shape=})"
            # override image shape to be invariant to height and width
            shape = (c, 1, 1)

        # Note: we initialize mean, std, min, max to infinity. They should be overwritten
        # downstream by `stats` or `policy.load_state_dict`, as expected. During forward,
        # we assert they are not infinity anymore.

        buffer = {}
        if norm_mode is NormalizationMode.MEAN_STD:
            mean = torch.ones(shape, dtype=torch.float32) * torch.inf
            std = torch.ones(shape, dtype=torch.float32) * torch.inf
            buffer = nn.ParameterDict(
                {
                    "mean": nn.Parameter(mean, requires_grad=False),
                    "std": nn.Parameter(std, requires_grad=False),
                }
            )
        elif norm_mode is NormalizationMode.MIN_MAX:
            min = torch.ones(shape, dtype=torch.float32) * torch.inf
            max = torch.ones(shape, dtype=torch.float32) * torch.inf
            buffer = nn.ParameterDict(
                {
                    "min": nn.Parameter(min, requires_grad=False),
                    "max": nn.Parameter(max, requires_grad=False),
                }
            )

        # TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
        if stats:
            if isinstance(stats[key]["mean"], np.ndarray):
                if norm_mode is NormalizationMode.MEAN_STD:
                    buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
                    buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
                elif norm_mode is NormalizationMode.MIN_MAX:
                    buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
                    buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
            elif isinstance(stats[key]["mean"], torch.Tensor):
                # Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
                # tensors anywhere (for example, when we use the same stats for normalization and
                # unnormalization). See the logic here
                # https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
                if norm_mode is NormalizationMode.MEAN_STD:
                    buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
                    buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
                elif norm_mode is NormalizationMode.MIN_MAX:
                    buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
                    buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
            else:
                type_ = type(stats[key]["mean"])
                raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")

        stats_buffers[key] = buffer
    return stats_buffers


def _no_stats_error_str(name: str) -> str:
    return (
        f"`{name}` is infinity. You should either initialize with `stats` as an argument, or use a "
        "pretrained model."
    )


class Normalize(nn.Module):
    """Normalizes data (e.g. "observation.image") for more stable and faster convergence during training."""

    def __init__(
        self,
        features: dict[str, PolicyFeature],
        norm_map: dict[str, NormalizationMode],
        stats: dict[str, dict[str, Tensor]] | None = None,
    ):
        """
        Args:
            shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
            are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
            mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
            is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
            modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
                are their normalization modes among:
                    - "mean_std": subtract the mean and divide by standard deviation.
                    - "min_max": map to [-1, 1] range.
            stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
                and values are dictionaries of statistic types and their values (e.g.
                `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
                training the model for the first time, these statistics will overwrite the default buffers. If
                not provided, as expected for finetuning or evaluation, the default buffers should to be
                overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
                dataset is not needed to get the stats, since they are already in the policy state_dict.
        """
        super().__init__()
        self.features = features
        self.norm_map = norm_map
        self.stats = stats
        stats_buffers = create_stats_buffers(features, norm_map, stats)
        for key, buffer in stats_buffers.items():
            setattr(self, "buffer_" + key.replace(".", "_"), buffer)

    # TODO(rcadene): should we remove torch.no_grad?
    @torch.no_grad
    def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
        batch = dict(batch)  # shallow copy avoids mutating the input batch
        for key, ft in self.features.items():
            if key not in batch:
                # FIXME(aliberts, rcadene): This might lead to silent fail!
                continue

            norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
            if norm_mode is NormalizationMode.IDENTITY:
                continue

            buffer = getattr(self, "buffer_" + key.replace(".", "_"))

            if norm_mode is NormalizationMode.MEAN_STD:
                mean = buffer["mean"]
                std = buffer["std"]
                assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
                assert not torch.isinf(std).any(), _no_stats_error_str("std")
                batch[key] = (batch[key] - mean) / (std + 1e-8)
            elif norm_mode is NormalizationMode.MIN_MAX:
                min = buffer["min"]
                max = buffer["max"]
                assert not torch.isinf(min).any(), _no_stats_error_str("min")
                assert not torch.isinf(max).any(), _no_stats_error_str("max")
                # normalize to [0,1]
                batch[key] = (batch[key] - min) / (max - min + 1e-8)
                # normalize to [-1, 1]
                batch[key] = batch[key] * 2 - 1
            else:
                raise ValueError(norm_mode)
        return batch


class Unnormalize(nn.Module):
    """
    Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their
    original range used by the environment.
    """

    def __init__(
        self,
        features: dict[str, PolicyFeature],
        norm_map: dict[str, NormalizationMode],
        stats: dict[str, dict[str, Tensor]] | None = None,
    ):
        """
        Args:
            shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
            are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
            mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
            is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
            modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
                are their normalization modes among:
                    - "mean_std": subtract the mean and divide by standard deviation.
                    - "min_max": map to [-1, 1] range.
            stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
                and values are dictionaries of statistic types and their values (e.g.
                `{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
                training the model for the first time, these statistics will overwrite the default buffers. If
                not provided, as expected for finetuning or evaluation, the default buffers should to be
                overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
                dataset is not needed to get the stats, since they are already in the policy state_dict.
        """
        super().__init__()
        self.features = features
        self.norm_map = norm_map
        self.stats = stats
        # `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)`
        stats_buffers = create_stats_buffers(features, norm_map, stats)
        for key, buffer in stats_buffers.items():
            setattr(self, "buffer_" + key.replace(".", "_"), buffer)

    # TODO(rcadene): should we remove torch.no_grad?
    @torch.no_grad
    def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
        batch = dict(batch)  # shallow copy avoids mutating the input batch
        for key, ft in self.features.items():
            if key not in batch:
                continue

            norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
            if norm_mode is NormalizationMode.IDENTITY:
                continue

            buffer = getattr(self, "buffer_" + key.replace(".", "_"))

            if norm_mode is NormalizationMode.MEAN_STD:
                mean = buffer["mean"]
                std = buffer["std"]
                assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
                assert not torch.isinf(std).any(), _no_stats_error_str("std")
                batch[key] = batch[key] * std + mean
            elif norm_mode is NormalizationMode.MIN_MAX:
                min = buffer["min"]
                max = buffer["max"]
                assert not torch.isinf(min).any(), _no_stats_error_str("min")
                assert not torch.isinf(max).any(), _no_stats_error_str("max")
                batch[key] = (batch[key] + 1) / 2
                batch[key] = batch[key] * (max - min) + min
            else:
                raise ValueError(norm_mode)
        return batch