File size: 4,576 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import pickle
from pathlib import Path

import torch

from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
from lerobot.common.policies.factory import make_policy
from lerobot.configs.policies import PreTrainedConfig


def display(tensor: torch.Tensor):
    if tensor.dtype == torch.bool:
        tensor = tensor.float()
    print(f"Shape: {tensor.shape}")
    print(f"Mean: {tensor.mean().item()}")
    print(f"Std: {tensor.std().item()}")
    print(f"Min: {tensor.min().item()}")
    print(f"Max: {tensor.max().item()}")


def main():
    num_motors = 14
    device = "cuda"
    # model_name = "pi0_aloha_towel"
    model_name = "pi0_aloha_sim"

    if model_name == "pi0_aloha_towel":
        dataset_repo_id = "lerobot/aloha_static_towel"
    else:
        dataset_repo_id = "lerobot/aloha_sim_transfer_cube_human"

    ckpt_torch_dir = Path.home() / f".cache/openpi/openpi-assets/checkpoints/{model_name}_pytorch"
    ckpt_jax_dir = Path.home() / f".cache/openpi/openpi-assets/checkpoints/{model_name}"
    save_dir = Path(f"../openpi/data/{model_name}/save")

    with open(save_dir / "example.pkl", "rb") as f:
        example = pickle.load(f)
    with open(save_dir / "outputs.pkl", "rb") as f:
        outputs = pickle.load(f)
    with open(save_dir / "noise.pkl", "rb") as f:
        noise = pickle.load(f)

    with open(ckpt_jax_dir / "assets/norm_stats.json") as f:
        norm_stats = json.load(f)

    # Override stats
    dataset_meta = LeRobotDatasetMetadata(dataset_repo_id)
    dataset_meta.stats["observation.state"]["mean"] = torch.tensor(
        norm_stats["norm_stats"]["state"]["mean"][:num_motors], dtype=torch.float32
    )
    dataset_meta.stats["observation.state"]["std"] = torch.tensor(
        norm_stats["norm_stats"]["state"]["std"][:num_motors], dtype=torch.float32
    )

    # Create LeRobot batch from Jax
    batch = {}
    for cam_key, uint_chw_array in example["images"].items():
        batch[f"observation.images.{cam_key}"] = torch.from_numpy(uint_chw_array) / 255.0
    batch["observation.state"] = torch.from_numpy(example["state"])
    batch["action"] = torch.from_numpy(outputs["actions"])
    batch["task"] = example["prompt"]

    if model_name == "pi0_aloha_towel":
        del batch["observation.images.cam_low"]
    elif model_name == "pi0_aloha_sim":
        batch["observation.images.top"] = batch["observation.images.cam_high"]
        del batch["observation.images.cam_high"]

    # Batchify
    for key in batch:
        if isinstance(batch[key], torch.Tensor):
            batch[key] = batch[key].unsqueeze(0)
        elif isinstance(batch[key], str):
            batch[key] = [batch[key]]
        else:
            raise ValueError(f"{key}, {batch[key]}")

    # To device
    for k in batch:
        if isinstance(batch[k], torch.Tensor):
            batch[k] = batch[k].to(device=device, dtype=torch.float32)

    noise = torch.from_numpy(noise).to(device=device, dtype=torch.float32)

    from lerobot.common import policies  # noqa

    cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
    cfg.pretrained_path = ckpt_torch_dir
    policy = make_policy(cfg, dataset_meta)

    # loss_dict = policy.forward(batch, noise=noise, time=time_beta)
    # loss_dict["loss"].backward()
    # print("losses")
    # display(loss_dict["losses_after_forward"])
    # print("pi_losses")
    # display(pi_losses)

    actions = []
    for _ in range(50):
        action = policy.select_action(batch, noise=noise)
        actions.append(action)

    actions = torch.stack(actions, dim=1)
    pi_actions = batch["action"]
    print("actions")
    display(actions)
    print()
    print("pi_actions")
    display(pi_actions)
    print("atol=3e-2", torch.allclose(actions, pi_actions, atol=3e-2))
    print("atol=2e-2", torch.allclose(actions, pi_actions, atol=2e-2))
    print("atol=1e-2", torch.allclose(actions, pi_actions, atol=1e-2))


if __name__ == "__main__":
    main()