File size: 4,807 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn.functional as F  # noqa: N812
from packaging.version import Version

if Version(torch.__version__) > Version("2.5.0"):
    # Ffex attention is only available from torch 2.5 onwards
    from torch.nn.attention.flex_attention import (
        _mask_mod_signature,
        _round_up_to_multiple,
        create_block_mask,
        create_mask,
        flex_attention,
    )


# @torch.compile(dynamic=False)
def flex_attention_forward(
    attention_mask: torch.Tensor,
    batch_size: int,
    head_dim: int,
    query_states: torch.Tensor,
    key_states: torch.Tensor,
    value_states: torch.Tensor,
    scaling=None,
):
    """
    This is defined out of classes to make compile happy.
    """

    original_dtype = query_states.dtype
    num_att_heads = 8
    num_key_value_heads = 1
    num_key_value_groups = num_att_heads // num_key_value_heads

    key_states = key_states[:, :, :, None, :]
    key_states = key_states.expand(
        batch_size, key_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
    )
    key_states = key_states.reshape(
        batch_size, key_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
    )

    value_states = value_states[:, :, :, None, :]
    value_states = value_states.expand(
        batch_size, value_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
    )
    value_states = value_states.reshape(
        batch_size, value_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
    )

    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    query_states = query_states.to(torch.float32)
    key_states = key_states.to(torch.float32)
    value_states = value_states.to(torch.float32)

    causal_mask = attention_mask
    if causal_mask is not None:
        causal_mask = causal_mask[:, None, :, : key_states.shape[2]]

        if causal_mask.shape[1] == 1 and query_states.shape[1] > 1:
            causal_mask = causal_mask.expand(-1, query_states.shape[1], -1, -1)

    def precomputed_mask_factory(precomputed_mask: torch.Tensor) -> _mask_mod_signature:
        def mask_mod(b, h, q_idx, kv_idx):
            # Danger zone: if b,h,q_idx,kv_idx exceed the shape, device-side assert occurs.
            return precomputed_mask[b][h][q_idx][kv_idx]

        return mask_mod

    b_mask, h_mask, q_len, kv_len = causal_mask.shape  # The shape of your mask

    block_size = 128
    q_len_rounded = _round_up_to_multiple(q_len, block_size)
    kv_len_rounded = _round_up_to_multiple(kv_len, block_size)

    # *CRITICAL* we do need to expand here, else we get a CUDA index error

    pad_q = q_len_rounded - q_len
    pad_k = kv_len_rounded - kv_len

    padded_causal_mask = F.pad(causal_mask, (0, pad_k, 0, pad_q), value=0.0)
    mask_mod_fn_orig = precomputed_mask_factory(padded_causal_mask)

    mask_4d = create_mask(
        mod_fn=mask_mod_fn_orig,
        B=b_mask,
        H=h_mask,
        Q_LEN=q_len_rounded,
        KV_LEN=kv_len_rounded,
        device=causal_mask.device,
        _compile=False,
    )

    mask_mod_fn_padded = precomputed_mask_factory(mask_4d)
    block_mask = create_block_mask(
        mask_mod=mask_mod_fn_padded,
        B=b_mask,
        H=h_mask,
        Q_LEN=q_len_rounded,
        KV_LEN=kv_len_rounded,
        BLOCK_SIZE=block_size,
        device=causal_mask.device,
        _compile=False,
    )

    #  mask is applied inside the kernel, ideally more efficiently than score_mod.
    attn_output, attention_weights = flex_attention(
        query_states,
        key_states,
        value_states,
        block_mask=block_mask,
        enable_gqa=True,  # because we shaped query/key states for GQA
        scale=head_dim**-0.5 if scaling is None else scaling,
        return_lse=True,
    )

    attn_output = attn_output.to(dtype=original_dtype)
    attn_output = attn_output.transpose(1, 2).contiguous()  # [B, Q_LEN, H, head_dim]
    attn_output = attn_output.reshape(
        batch_size,
        -1,
        attn_output.shape[2] * attn_output.shape[3],  # merges [H, head_dim]
    )
    return attn_output