Spaces:
Running
Running
File size: 28,551 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Ο0: A Vision-Language-Action Flow Model for General Robot Control
[Paper](https://www.physicalintelligence.company/download/pi0.pdf)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Install pi0 extra dependencies:
```bash
pip install -e ".[pi0]"
```
Example of finetuning the pi0 pretrained model (`pi0_base` in `openpi`):
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/pi0 \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of finetuning the pi0 neural network with PaliGemma and expert Gemma
pretrained with VLM default parameters before pi0 finetuning:
```bash
python lerobot/scripts/train.py \
--policy.type=pi0 \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of using the pi0 pretrained model outside LeRobot training framework:
```python
policy = Pi0Policy.from_pretrained("lerobot/pi0")
```
"""
import math
from collections import deque
import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0.paligemma_with_expert import (
PaliGemmaWithExpertConfig,
PaliGemmaWithExpertModel,
)
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.utils.utils import get_safe_dtype
def create_sinusoidal_pos_embedding(
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
) -> Tensor:
"""Computes sine-cosine positional embedding vectors for scalar positions."""
if dimension % 2 != 0:
raise ValueError(f"dimension ({dimension}) must be divisible by 2")
if time.ndim != 1:
raise ValueError("The time tensor is expected to be of shape `(batch_size, )`.")
dtype = get_safe_dtype(torch.float64, device.type)
fraction = torch.linspace(0.0, 1.0, dimension // 2, dtype=dtype, device=device)
period = min_period * (max_period / min_period) ** fraction
# Compute the outer product
scaling_factor = 1.0 / period * 2 * math.pi
sin_input = scaling_factor[None, :] * time[:, None]
pos_emb = torch.cat([torch.sin(sin_input), torch.cos(sin_input)], dim=1)
return pos_emb
def sample_beta(alpha, beta, bsize, device):
gamma1 = torch.empty((bsize,), device=device).uniform_(0, 1).pow(1 / alpha)
gamma2 = torch.empty((bsize,), device=device).uniform_(0, 1).pow(1 / beta)
return gamma1 / (gamma1 + gamma2)
def make_att_2d_masks(pad_masks, att_masks):
"""Copied from big_vision.
Tokens can attend to valid inputs tokens which have a cumulative mask_ar
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to
setup several types of attention, for example:
[[1 1 1 1 1 1]]: pure causal attention.
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between
themselves and the last 3 tokens have a causal attention. The first
entry could also be a 1 without changing behaviour.
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a
block can attend all previous blocks and all tokens on the same block.
Args:
input_mask: bool[B, N] true if its part of the input, false if padding.
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on
it and 0 where it shares the same attention mask as the previous token.
"""
if att_masks.ndim != 2:
raise ValueError(att_masks.ndim)
if pad_masks.ndim != 2:
raise ValueError(pad_masks.ndim)
cumsum = torch.cumsum(att_masks, dim=1)
att_2d_masks = cumsum[:, None, :] <= cumsum[:, :, None]
pad_2d_masks = pad_masks[:, None, :] * pad_masks[:, :, None]
att_2d_masks = att_2d_masks & pad_2d_masks
return att_2d_masks
def resize_with_pad(img, width, height, pad_value=-1):
# assume no-op when width height fits already
if img.ndim != 4:
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
cur_height, cur_width = img.shape[2:]
ratio = max(cur_width / width, cur_height / height)
resized_height = int(cur_height / ratio)
resized_width = int(cur_width / ratio)
resized_img = F.interpolate(
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
pad_height = max(0, int(height - resized_height))
pad_width = max(0, int(width - resized_width))
# pad on left and top of image
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
return padded_img
def pad_vector(vector, new_dim):
"""Can be (batch_size x sequence_length x features_dimension)
or (batch_size x features_dimension)
"""
if vector.shape[-1] == new_dim:
return vector
shape = list(vector.shape)
current_dim = shape[-1]
shape[-1] = new_dim
new_vector = torch.zeros(*shape, dtype=vector.dtype, device=vector.device)
new_vector[..., :current_dim] = vector
return new_vector
def normalize(x, min_val, max_val):
return (x - min_val) / (max_val - min_val)
def unnormalize(x, min_val, max_val):
return x * (max_val - min_val) + min_val
def safe_arcsin(value):
# This ensures that the input stays within
# [β1,1] to avoid invalid values for arcsin
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
def aloha_gripper_to_angular(value):
# Aloha transforms the gripper positions into a linear space. The following code
# reverses this transformation to be consistent with pi0 which is pretrained in
# angular space.
#
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
# This is the inverse of the angular to linear transformation inside the Interbotix code.
def linear_to_radian(linear_position, arm_length, horn_radius):
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
return safe_arcsin(value)
# The constants are taken from the Interbotix code.
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
# Normalize to [0, 1].
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
return normalize(value, min_val=0.4, max_val=1.5)
def aloha_gripper_from_angular(value):
# Convert from the gripper position used by pi0 to the gripper position that is used by Aloha.
# Note that the units are still angular but the range is different.
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
value = unnormalize(value, min_val=0.4, max_val=1.5)
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
return normalize(value, min_val=-0.6213, max_val=1.4910)
def aloha_gripper_from_angular_inv(value):
# Directly inverts the gripper_from_angular function.
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
return normalize(value, min_val=0.4, max_val=1.5)
class PI0Policy(PreTrainedPolicy):
"""Wrapper class around PI0FlowMatching model to train and run inference within LeRobot."""
config_class = PI0Config
name = "pi0"
def __init__(
self,
config: PI0Config,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoTokenizer.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FlowMatching(config)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
def get_optim_params(self) -> dict:
return self.parameters()
@torch.no_grad
def select_action(self, batch: dict[str, Tensor], noise: Tensor | None = None) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.model.sample_actions(
images, img_masks, lang_tokens, lang_masks, state, noise=noise
)
# Unpad actions
original_action_dim = self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.prepare_action(batch)
actions_is_pad = batch.get("action_is_pad")
loss_dict = {}
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
loss_dict["losses_after_forward"] = losses.clone()
if actions_is_pad is not None:
in_episode_bound = ~actions_is_pad
losses = losses * in_episode_bound.unsqueeze(-1)
loss_dict["losses_after_in_ep_bound"] = losses.clone()
# Remove padding
losses = losses[:, :, : self.config.max_action_dim]
loss_dict["losses_after_rm_padding"] = losses.clone()
# For backward pass
loss = losses.mean()
# For logging
loss_dict["l2_loss"] = loss.item()
return loss, loss_dict
def prepare_images(self, batch):
"""Apply Pi0 preprocessing to the images, like resizing to 224x224 and padding to keep aspect ratio, and
convert pixel range from [0.0, 1.0] to [-1.0, 1.0] as requested by SigLIP.
"""
images = []
img_masks = []
present_img_keys = [key for key in self.config.image_features if key in batch]
missing_img_keys = [key for key in self.config.image_features if key not in batch]
if len(present_img_keys) == 0:
raise ValueError(
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
)
# Preprocess image features present in the batch
for key in present_img_keys:
img = batch[key]
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(img, *self.config.resize_imgs_with_padding, pad_value=0)
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
images.append(img)
img_masks.append(mask)
# Create image features not present in the batch
# as fully 0 padded images.
for num_empty_cameras in range(len(missing_img_keys)):
if num_empty_cameras >= self.config.empty_cameras:
break
img = torch.ones_like(img) * -1
mask = torch.zeros_like(mask)
images.append(img)
img_masks.append(mask)
return images, img_masks
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_ROBOT].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
tasks = [task if task.endswith("\n") else f"{task}\n" for task in tasks]
tokenized_prompt = self.language_tokenizer.__call__(
tasks,
padding="max_length",
padding_side="right",
max_length=self.config.tokenizer_max_length,
return_tensors="pt",
)
lang_tokens = tokenized_prompt["input_ids"].to(device=device)
lang_masks = tokenized_prompt["attention_mask"].to(device=device, dtype=torch.bool)
return lang_tokens, lang_masks
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
state[:, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
return state
def _pi_aloha_encode_actions(self, actions):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
return actions
def _pi_aloha_encode_actions_inv(self, actions):
# Flip the joints again.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
return actions
def prepare_state(self, batch):
"""Pad state"""
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
return state
def prepare_action(self, batch):
"""Pad action"""
actions = pad_vector(batch[ACTION], self.config.max_action_dim)
return actions
class PI0FlowMatching(nn.Module):
"""
Ο0: A Vision-Language-Action Flow Model for General Robot Control
[Paper](https://www.physicalintelligence.company/download/pi0.pdf)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
ββββββββββββββββββββββββββββββββ
β actions β
β β² β
β ββ΄ββββββ β
β kv cache βGemma β β
β ββββββββββββΊβExpertβ β
β β β β β
β ββ΄βββββββββ βx 10 β β
β β β ββ²βββ²βββ β
β βPaliGemmaβ β β β
β β β β robot state β
β β β noise β
β ββ²βββ²ββββββ β
β β β β
β β image(s) β
β language tokens β
ββββββββββββββββββββββββββββββββ
"""
def __init__(self, config):
super().__init__()
self.config = config
paligemma_with_export_config = PaliGemmaWithExpertConfig(
freeze_vision_encoder=self.config.freeze_vision_encoder,
train_expert_only=self.config.train_expert_only,
attention_implementation=self.config.attention_implementation,
)
self.paligemma_with_expert = PaliGemmaWithExpertModel(paligemma_with_export_config)
# Projections are float32
self.state_proj = nn.Linear(self.config.max_state_dim, self.config.proj_width)
self.action_in_proj = nn.Linear(self.config.max_action_dim, self.config.proj_width)
self.action_out_proj = nn.Linear(self.config.proj_width, self.config.max_action_dim)
self.action_time_mlp_in = nn.Linear(self.config.proj_width * 2, self.config.proj_width)
self.action_time_mlp_out = nn.Linear(self.config.proj_width, self.config.proj_width)
self.set_requires_grad()
def set_requires_grad(self):
for params in self.state_proj.parameters():
params.requires_grad = self.config.train_state_proj
def sample_noise(self, shape, device):
noise = torch.normal(
mean=0.0,
std=1.0,
size=shape,
dtype=torch.float32,
device=device,
)
return noise
def sample_time(self, bsize, device):
time_beta = sample_beta(1.5, 1.0, bsize, device)
time = time_beta * 0.999 + 0.001
return time.to(dtype=torch.float32, device=device)
def embed_prefix(
self, images, img_masks, lang_tokens, lang_masks
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Embed images with SigLIP and language tokens with embedding layer to prepare
for PaliGemma transformer processing.
"""
# TODO: avoid list in python and torch.cat ; prefer pre-allocation with torch.empty
embs = []
pad_masks = []
att_masks = []
# TODO: remove for loop
for (
img,
img_mask,
) in zip(images, img_masks, strict=False):
img_emb = self.paligemma_with_expert.embed_image(img)
img_emb = img_emb.to(dtype=torch.bfloat16)
# Normalize image embeddings
img_emb_dim = img_emb.shape[-1]
img_emb = img_emb * torch.tensor(img_emb_dim**0.5, dtype=img_emb.dtype, device=img_emb.device)
bsize, num_img_embs = img_emb.shape[:2]
img_mask = img_mask[:, None].expand(bsize, num_img_embs)
embs.append(img_emb)
pad_masks.append(img_mask)
# Create attention masks so that image tokens attend to each other
att_masks += [0] * num_img_embs
lang_emb = self.paligemma_with_expert.embed_language_tokens(lang_tokens)
# Normalize language embeddings
lang_emb_dim = lang_emb.shape[-1]
lang_emb = lang_emb * math.sqrt(lang_emb_dim)
embs.append(lang_emb)
pad_masks.append(lang_masks)
# full attention between image and language inputs
num_lang_embs = lang_emb.shape[1]
att_masks += [0] * num_lang_embs
embs = torch.cat(embs, dim=1)
pad_masks = torch.cat(pad_masks, dim=1)
att_masks = torch.tensor(att_masks, dtype=torch.bool, device=pad_masks.device)
att_masks = att_masks[None, :].expand(bsize, len(att_masks))
return embs, pad_masks, att_masks
def embed_suffix(self, state, noisy_actions, timestep):
"""Embed state, noisy_actions, timestep to prepare for Expert Gemma processing."""
embs = []
pad_masks = []
att_masks = []
# Embed state
state_emb = self.state_proj(state)
state_emb = state_emb.to(dtype=torch.bfloat16)
embs.append(state_emb[:, None, :])
bsize = state_emb.shape[0]
dtype = state_emb.dtype
device = state_emb.device
state_mask = torch.ones(bsize, 1, dtype=torch.bool, device=device)
pad_masks.append(state_mask)
# Set attention masks so that image and language inputs do not attend to state or actions
att_masks += [1]
# Embed timestep using sine-cosine positional encoding with sensitivity in the range [0, 1]
time_emb = create_sinusoidal_pos_embedding(
timestep, self.config.proj_width, min_period=4e-3, max_period=4.0, device=device
)
time_emb = time_emb.type(dtype=dtype)
# Fuse timestep + action information using an MLP
action_emb = self.action_in_proj(noisy_actions)
time_emb = time_emb[:, None, :].expand_as(action_emb)
action_time_emb = torch.cat([action_emb, time_emb], dim=2)
action_time_emb = self.action_time_mlp_in(action_time_emb)
action_time_emb = F.silu(action_time_emb) # swish == silu
action_time_emb = self.action_time_mlp_out(action_time_emb)
# Add to input tokens
embs.append(action_time_emb)
bsize, action_time_dim = action_time_emb.shape[:2]
action_time_mask = torch.ones(bsize, action_time_dim, dtype=torch.bool, device=device)
pad_masks.append(action_time_mask)
# Set attention masks so that image, language and state inputs do not attend to action tokens
att_masks += [1] + ([0] * (self.config.n_action_steps - 1))
embs = torch.cat(embs, dim=1)
pad_masks = torch.cat(pad_masks, dim=1)
att_masks = torch.tensor(att_masks, dtype=embs.dtype, device=embs.device)
att_masks = att_masks[None, :].expand(bsize, len(att_masks))
return embs, pad_masks, att_masks
def forward(
self, images, img_masks, lang_tokens, lang_masks, state, actions, noise=None, time=None
) -> Tensor:
"""Do a full training forward pass and compute the loss (batch_size x num_steps x num_motors)"""
if noise is None:
noise = self.sample_noise(actions.shape, actions.device)
if time is None:
time = self.sample_time(actions.shape[0], actions.device)
time_expanded = time[:, None, None]
x_t = time_expanded * noise + (1 - time_expanded) * actions
u_t = noise - actions
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(
images, img_masks, lang_tokens, lang_masks
)
suffix_embs, suffix_pad_masks, suffix_att_masks = self.embed_suffix(state, x_t, time)
pad_masks = torch.cat([prefix_pad_masks, suffix_pad_masks], dim=1)
att_masks = torch.cat([prefix_att_masks, suffix_att_masks], dim=1)
att_2d_masks = make_att_2d_masks(pad_masks, att_masks)
position_ids = torch.cumsum(pad_masks, dim=1) - 1
(_, suffix_out), _ = self.paligemma_with_expert.forward(
attention_mask=att_2d_masks,
position_ids=position_ids,
past_key_values=None,
inputs_embeds=[prefix_embs, suffix_embs],
use_cache=False,
fill_kv_cache=False,
)
suffix_out = suffix_out[:, -self.config.n_action_steps :]
# Original openpi code, upcast attention output
suffix_out = suffix_out.to(dtype=torch.float32)
v_t = self.action_out_proj(suffix_out)
losses = F.mse_loss(u_t, v_t, reduction="none")
return losses
def sample_actions(self, images, img_masks, lang_tokens, lang_masks, state, noise=None) -> Tensor:
"""Do a full inference forward and compute the action (batch_size x num_steps x num_motors)"""
bsize = state.shape[0]
device = state.device
if noise is None:
actions_shape = (bsize, self.config.n_action_steps, self.config.max_action_dim)
noise = self.sample_noise(actions_shape, device)
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(
images, img_masks, lang_tokens, lang_masks
)
prefix_att_2d_masks = make_att_2d_masks(prefix_pad_masks, prefix_att_masks)
prefix_position_ids = torch.cumsum(prefix_pad_masks, dim=1) - 1
# Compute image and language key value cache
_, past_key_values = self.paligemma_with_expert.forward(
attention_mask=prefix_att_2d_masks,
position_ids=prefix_position_ids,
past_key_values=None,
inputs_embeds=[prefix_embs, None],
use_cache=self.config.use_cache,
fill_kv_cache=True,
)
dt = -1.0 / self.config.num_steps
dt = torch.tensor(dt, dtype=torch.float32, device=device)
x_t = noise
time = torch.tensor(1.0, dtype=torch.float32, device=device)
while time >= -dt / 2:
expanded_time = time.expand(bsize)
v_t = self.denoise_step(
state,
prefix_pad_masks,
past_key_values,
x_t,
expanded_time,
)
# Euler step
x_t += dt * v_t
time += dt
return x_t
def denoise_step(
self,
state,
prefix_pad_masks,
past_key_values,
x_t,
timestep,
):
"""Apply one denoising step of the noise `x_t` at a given timestep."""
suffix_embs, suffix_pad_masks, suffix_att_masks = self.embed_suffix(state, x_t, timestep)
suffix_len = suffix_pad_masks.shape[1]
batch_size = prefix_pad_masks.shape[0]
prefix_len = prefix_pad_masks.shape[1]
prefix_pad_2d_masks = prefix_pad_masks[:, None, :].expand(batch_size, suffix_len, prefix_len)
suffix_att_2d_masks = make_att_2d_masks(suffix_pad_masks, suffix_att_masks)
full_att_2d_masks = torch.cat([prefix_pad_2d_masks, suffix_att_2d_masks], dim=2)
prefix_offsets = torch.sum(prefix_pad_masks, dim=-1)[:, None]
position_ids = prefix_offsets + torch.cumsum(suffix_pad_masks, dim=1) - 1
outputs_embeds, _ = self.paligemma_with_expert.forward(
attention_mask=full_att_2d_masks,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=[None, suffix_embs],
use_cache=self.config.use_cache,
fill_kv_cache=False,
)
suffix_out = outputs_embeds[1]
suffix_out = suffix_out[:, -self.config.n_action_steps :]
suffix_out = suffix_out.to(dtype=torch.float32)
v_t = self.action_out_proj(suffix_out)
return v_t
|