Spaces:
Running
Running
File size: 40,204 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models
[Paper](https://arxiv.org/abs/2501.09747)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`):
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/pi0fast_base \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of training the pi0+FAST neural network with from scratch:
```bash
python lerobot/scripts/train.py \
--policy.type=pi0fast \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of using the pi0 pretrained model outside LeRobot training framework:
```python
policy = PI0FASTPolicy.from_pretrained("lerobot/pi0fast_base")
```
"""
from collections import deque
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
from PIL import Image
from scipy.fft import idct
from torch import Tensor, nn
from transformers import AutoProcessor, AutoTokenizer, PaliGemmaForConditionalGeneration
from transformers.cache_utils import HybridCache, StaticCache
from transformers.models.auto import CONFIG_MAPPING
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.common.policies.pretrained import PreTrainedPolicy
PRECISION = {
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def normalize(x, min_val, max_val):
return (x - min_val) / (max_val - min_val)
def unnormalize(x, min_val, max_val):
return x * (max_val - min_val) + min_val
def safe_arcsin(value):
# This ensures that the input stays within
# [−1,1] to avoid invalid values for arcsin
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
def aloha_gripper_to_angular(value):
# Aloha transforms the gripper positions into a linear space. The following code
# reverses this transformation to be consistent with pi0 which is pretrained in
# angular space.
#
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
# This is the inverse of the angular to linear transformation inside the Interbotix code.
def linear_to_radian(linear_position, arm_length, horn_radius):
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
return safe_arcsin(value)
# The constants are taken from the Interbotix code.
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
# Normalize to [0, 1].
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
return normalize(value, min_val=0.4, max_val=1.5)
def aloha_gripper_from_angular(value):
# Convert from the gripper position used by pi0 to the gripper position that is used by Aloha.
# Note that the units are still angular but the range is different.
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
value = unnormalize(value, min_val=0.4, max_val=1.5)
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
return normalize(value, min_val=-0.6213, max_val=1.4910)
def aloha_gripper_from_angular_inv(value):
# Directly inverts the gripper_from_angular function.
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
return normalize(value, min_val=0.4, max_val=1.5)
class PI0FASTPolicy(PreTrainedPolicy):
"""Wrapper class around PI0FAST tokenizer and model to train and run inference within LeRobot."""
config_class = PI0FASTConfig
name = "pi0fast"
def __init__(
self,
config: PI0FASTConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FAST(config)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
def get_optim_params(self) -> dict:
return self.parameters()
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
state[:, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
return state
def _pi_aloha_encode_actions(self, actions):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
return actions
def _pi_aloha_encode_actions_inv(self, actions):
# Flip the joints again.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
return actions
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
actions = self.model.generate_actions(batch)
actions = actions[:, : self.config.n_action_steps]
original_action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
loss_dict = self.model.forward(batch)
return loss_dict["loss"], loss_dict
def block_causal_update_causal_mask(
attention_mask,
token_type_ids=None,
past_key_values=None,
cache_position=None,
input_tensor=None,
attn_implementation: str = "eager",
dtype: torch.dtype = "float32",
):
"""
Update the causal mask during training and generation. It can be customized to different attention masks.
"""
if attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(dtype).min
if input_tensor is None:
input_tensor = attention_mask
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache or isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
# Handle precomputed attention masks
if attention_mask is not None and attention_mask.dim() == 4:
return attention_mask
# Causal mask initialization
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
# Standard causal masking (triu ensures tokens can only attend to past)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
# Apply block causal mask
if token_type_ids is not None:
token_type_ids = token_type_ids.to(causal_mask.device).bool()
cumsum = torch.cumsum(token_type_ids, dim=1)
block_causal_mask = cumsum[:, None, :] <= cumsum[:, :, None]
# Combine causal_mask with block-wise attention mask
causal_mask = torch.where(block_causal_mask, 0.0, causal_mask)
causal_mask = causal_mask[:, None, :, :]
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # Copy to contiguous memory for in-place edits
mask_length = attention_mask.shape[-1]
# Apply padding mask
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def prepare_inputs_for_generation(
# self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
num_logits_to_keep=None,
labels=None,
self=None,
**kwargs,
):
# create block causal attention
if cache_position[0] > 0 and input_ids.shape[1] > 0:
input_tensor = input_ids[:, -1:]
new_positions = (
torch.ones(
(position_ids.shape[0], input_ids.shape[1]),
dtype=position_ids.dtype,
device=position_ids.device,
).cumsum(-1)
+ position_ids[:, -1:]
)
position_ids = torch.cat([position_ids, new_positions], dim=-1)
else:
input_tensor = inputs_embeds
attention_mask = block_causal_update_causal_mask(
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
input_tensor=input_tensor,
token_type_ids=token_type_ids,
dtype=self.dtype,
attn_implementation=self.config.text_config._attn_implementation,
)
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
num_logits_to_keep=num_logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# Position_ids in Paligemma are 1-indexed
if model_inputs.get("position_ids") is not None:
model_inputs["position_ids"] += 1
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
class PI0FAST(nn.Module):
def __init__(self, config: PI0FASTConfig):
super().__init__()
self.config = config
# TODO: move tokenizers in Policy
fast_tokenizer_path = "physical-intelligence/fast"
pi0_paligemma_path = "google/paligemma-3b-pt-224"
self.paligemma_tokenizer = AutoTokenizer.from_pretrained(pi0_paligemma_path)
self.processor = AutoProcessor.from_pretrained(pi0_paligemma_path)
self.fast_tokenizer = AutoProcessor.from_pretrained(fast_tokenizer_path, trust_remote_code=True)
self.fast_skip_tokens = self.config.fast_skip_tokens
self.max_input_seq_len = self.config.max_input_seq_len
self.action_horizon = self.config.chunk_size
self.action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
precision = config.precision
torch_precision = PRECISION.get(precision, torch.float32)
self.pad_token_id = (
self.paligemma_tokenizer.pad_token_id
if hasattr(self.paligemma_tokenizer, "pad_token_id")
else self.paligemma_tokenizer.eos_token_id
)
paligemma_config = CONFIG_MAPPING["paligemma"](
transformers_version="4.48.1",
_vocab_size=257152,
bos_token_id=2,
eos_token_id=1,
hidden_size=2048,
image_token_index=257152,
model_type="paligemma",
pad_token_id=0,
projection_dim=2048,
text_config={
"hidden_activation": "gelu_pytorch_tanh",
"hidden_size": 2048,
"intermediate_size": 16384,
"model_type": "gemma",
"num_attention_heads": 8,
"num_hidden_layers": 18,
"num_image_tokens": 256,
"num_key_value_heads": 1,
"torch_dtype": precision,
"vocab_size": 257152,
"_attn_implementation": "eager",
},
vision_config={
"hidden_size": 1152,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"num_image_tokens": 256,
"patch_size": 14,
"projection_dim": 2048,
"projector_hidden_act": "gelu_pytorch_tanh",
"torch_dtype": precision,
"vision_use_head": False,
},
)
self.pi0_paligemma = PaliGemmaForConditionalGeneration(config=paligemma_config)
self.pi0_paligemma.prepare_inputs_for_generation = partial(
prepare_inputs_for_generation, self=self.pi0_paligemma
)
# change important stuff in bf16
params_to_change_dtype = [
"language_model",
"vision_tower",
"multi_modal",
]
for name, param in self.pi0_paligemma.named_parameters():
if any(selector in name for selector in params_to_change_dtype):
param.data = param.data.to(dtype=torch_precision)
self.set_requires_grad()
self.image_keys = self.config.image_features.keys()
self.ignore_index = self.pi0_paligemma.config.ignore_index
self.padding_side = self.config.padding_side
def set_requires_grad(self):
if self.config.freeze_vision_encoder:
self.pi0_paligemma.vision_tower.eval()
for params in self.pi0_paligemma.vision_tower.parameters():
params.requires_grad = False
# To avoid unused params issue with distributed training
if self.config.freeze_lm_head:
for name, params in self.pi0_paligemma.named_parameters():
if "embed_tokens" in name: # lm heads and embedding layer are tied
params.requires_grad = False
def embed_tokens(self, tokens: torch.Tensor):
return self.pi0_paligemma.language_model.model.embed_tokens(tokens)
def prepare_inputs_for_generation(self, *args, **kwargs):
return self.pi0_paligemma.prepare_inputs_for_generation(*args, **kwargs)
def prepare_images(self, batch):
"""Preprocess LeRobot batch into Pi0 inputs"""
images = []
img_masks = []
present_img_keys = [key for key in self.image_keys if key in batch]
if len(present_img_keys) == 0:
raise ValueError(
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
)
# Preprocess image features present in the batch
num_empty_cameras = 0
for key in self.image_keys:
if key in present_img_keys:
img = batch[key]
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(
img,
*self.config.resize_imgs_with_padding,
pad_value=0,
interpolate_like_pi=self.config.interpolate_like_pi,
)
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
else:
if num_empty_cameras >= self.config.empty_cameras:
continue
img = torch.ones_like(img) * -1
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
num_empty_cameras += 1
images.append(img)
img_masks.append(mask)
return images, img_masks
def normalize_actions(self, actions: torch.Tensor) -> torch.Tensor:
mins = actions.amin(dim=(1, 2), keepdim=True) # [0]
maxs = actions.amax(dim=(1, 2), keepdim=True) # [0]
return 2 * (actions - mins) / (maxs - mins + 1e-8) - 1
def _act_tokens_to_paligemma_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
out = self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens - tokens
return out
def fast_tokenizer_wrapper(self, actions_norm):
"""
A wrapper for self.fast_tokenizer that ensures batch processing,
conversion to PyTorch tensors, and returns a dictionary without padding.
"""
batch_tokens = self.fast_tokenizer(actions_norm)
fast_out = self.processor.tokenizer.pad({"input_ids": batch_tokens}, return_tensors="pt")
return fast_out
def create_token_type_ids(self, padded_mask: torch.Tensor, prefix_len: int) -> torch.Tensor:
token_type_ids = torch.zeros_like(padded_mask, dtype=torch.bool)
# Compute cumulative sum mask
cumsum_mask = (padded_mask != 0).cumsum(dim=1)
# Suffix block (everything after prefix_len)
suffix_mask = cumsum_mask > prefix_len
token_type_ids = suffix_mask
return token_type_ids
def create_input_tokens(self, state, lang_text, actions=None):
bsize = state.shape[0]
device = state.device
bins = torch.linspace(-1, 1, 256 + 1, device=device)[:-1]
discretized = torch.bucketize(state, bins) - 1
discretized = discretized[:, :32]
prefix_texts = []
state_text = []
for txt, disc in zip(lang_text, discretized, strict=False):
cleaned = txt.lower().strip().replace("_", " ")
state_str = " ".join(str(val.item()) for val in disc)
prefix_texts.append(f"Task: {cleaned}, State: {state_str};\n")
state_text.append(f"State: {state_str};\n")
prefix_out = self.paligemma_tokenizer(
prefix_texts, add_special_tokens=True, return_tensors="pt", padding="longest", truncation=False
)
prefix_ids = prefix_out["input_ids"].to(device)
prefix_mask = prefix_out["attention_mask"].to(device)
prefix_lens = prefix_mask.sum(dim=1)[:, None].cpu()
if actions is not None:
actions_norm = self.normalize_actions(actions)
actions_pad = F.pad(
actions_norm, (0, max(0, self.config.max_action_dim - actions_norm.shape[2])), value=0
)[:, :, : self.config.max_action_dim]
fast_out = self.fast_tokenizer_wrapper(
actions_pad.cpu(),
)
act_ids = fast_out["input_ids"]
act_mask = fast_out["attention_mask"].to(device)
act_ids = self._act_tokens_to_paligemma_tokens(act_ids).to(device)
# Replace action with 0 to pad tokens
act_ids = torch.where(
act_ids == self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens,
self.pad_token_id,
act_ids,
)
eos_token = torch.tensor(
[self.paligemma_tokenizer.eos_token_id], dtype=torch.long, device=device
).expand(bsize, -1)
eos_mask = torch.tensor([1], dtype=torch.long, device=device).expand(bsize, -1)
bos = self.paligemma_tokenizer("Action: ", add_special_tokens=False, return_tensors="pt")
bos_token = bos["input_ids"].expand(act_ids.shape[0], -1).to(device)
bos_mask = bos["attention_mask"].expand(act_ids.shape[0], -1).to(device)
act_ids = torch.cat([bos_token, act_ids, eos_token], dim=1)
act_mask = torch.cat([bos_mask, act_mask, eos_mask], dim=1)
act_mask = act_mask.to(device)
else:
act_ids = torch.empty(bsize, self.pad_token_id, dtype=torch.long, device=device)
act_mask = torch.empty(bsize, 0, dtype=torch.long, device=device)
final_ids = torch.cat([prefix_ids, act_ids], dim=1)
final_mask = torch.cat([prefix_mask, act_mask], dim=1)
batch_inputs = {"input_ids": final_ids.tolist(), "attention_mask": final_mask.tolist()}
# Use tokenizer pad function
padded_output = self.paligemma_tokenizer.pad(
batch_inputs, padding="longest", max_length=180, return_tensors="pt"
)
padded_mask = padded_output["attention_mask"]
# define tensor of padding lengths
att_mask = (padded_mask != 0).cumsum(dim=1) > prefix_lens
token_type_ids = self.create_token_type_ids(padded_mask=padded_mask, prefix_len=prefix_lens)
padded_output["padded_mask"] = padded_output.pop("attention_mask")
padded_output["attention_mask"] = att_mask
# loss is computed not on prefix, and not on padding
padded_output["loss_mask"] = att_mask & padded_output["padded_mask"]
padded_output["token_type_ids"] = token_type_ids
return padded_output
def shift_padding_side(
self,
tokens: torch.Tensor,
ar_mask: torch.Tensor,
padding_mask: torch.Tensor,
loss_mask: torch.Tensor,
targets: torch.Tensor,
token_type_ids: torch.Tensor,
padding_side: str = "right",
) -> tuple[torch.Tensor]:
if padding_side not in ["right", "left"]:
return tokens, ar_mask, padding_mask, loss_mask, targets, token_type_ids
new_tokens = torch.empty_like(tokens)
new_ar_masks = torch.empty_like(ar_mask)
new_padding_mask = torch.empty_like(padding_mask)
new_loss_mask = torch.empty_like(loss_mask)
new_targets = torch.empty_like(targets)
new_token_type_ids = torch.empty_like(token_type_ids)
batch_size = tokens.shape[0]
for i in range(batch_size):
padding_indices = torch.where(padding_mask[i] == 0)[0]
non_padding_indices = torch.where(padding_mask[i] == 1)[0]
if padding_side == "left":
new_indices = torch.cat((padding_indices, non_padding_indices), dim=0)
else:
new_indices = torch.cat((non_padding_indices, padding_indices), dim=0)
new_tokens[i] = tokens[i].index_select(0, new_indices)
new_ar_masks[i] = ar_mask[i].index_select(0, new_indices)
new_padding_mask[i] = padding_mask[i].index_select(0, new_indices)
new_loss_mask[i] = loss_mask[i].index_select(0, new_indices)
new_targets[i] = targets[i].index_select(0, new_indices)
new_token_type_ids[i] = token_type_ids[i].index_select(0, new_indices)
return new_tokens, new_ar_masks, new_padding_mask, new_loss_mask, new_targets, new_token_type_ids
def forward(self, batch: dict[str, Tensor]):
device = batch[OBS_ROBOT].device
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(
state=batch[OBS_ROBOT],
lang_text=batch["task"],
actions=batch[ACTION],
)
embs, pad_masks, _, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side=self.padding_side,
)
position_ids = torch.cumsum(pad_masks, dim=1) - 1
token_type_ids = token_type_ids.to(dtype=torch.int64)
past_seen_tokens = 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + embs.shape[1], device=embs.device)
pad_masks = block_causal_update_causal_mask(
attention_mask=pad_masks,
past_key_values=None,
cache_position=cache_position,
input_tensor=embs,
token_type_ids=token_type_ids,
dtype=self.pi0_paligemma.dtype,
attn_implementation=self.pi0_paligemma.config.text_config._attn_implementation,
)
outputs = self.pi0_paligemma.forward(
input_ids=None,
token_type_ids=None,
attention_mask=pad_masks,
position_ids=position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=False,
labels=None,
)
logits = outputs.logits
loss_fct = nn.CrossEntropyLoss(reduction="none")
# Shift left for next-step prediction
logits = logits[:, :-1, :]
targets = targets[:, 1:].to(device) # Shift targets
loss_mask = loss_mask[:, 1:].to(device) # Ensure correct shape
# Compute per-token loss
token_loss = loss_fct(logits.reshape(-1, logits.shape[-1]), targets.reshape(-1))
# Apply loss mask
token_loss = token_loss * loss_mask.reshape(-1)
# Compute final loss
loss = token_loss.sum() / torch.clamp(loss_mask.sum(), min=1)
# Return loss dictionary
loss_dict = {"ce_loss": loss.item(), "loss": loss}
return loss_dict
def decode_actions_with_fast(
self,
tokens: list[list[int]],
*,
time_horizon: int | None = None,
action_dim: int | None = None,
relaxed_decoding: bool = True,
) -> np.array:
"""
Adapt original decoding in FAST to always return actions instead of zeros.
"""
self.time_horizon = (
time_horizon or self.fast_tokenizer.time_horizon or self.fast_tokenizer.called_time_horizon
)
self.action_dim = (
action_dim or self.fast_tokenizer.action_dim or self.fast_tokenizer.called_action_dim
)
# Cache the time horizon and action dimension for the next call
self.called_time_horizon = self.time_horizon
self.called_action_dim = self.action_dim
assert self.time_horizon is not None and self.action_dim is not None, (
"Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
)
decoded_actions = []
for token in tokens:
try:
decoded_tokens = self.fast_tokenizer.bpe_tokenizer.decode(token)
decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.fast_tokenizer.min_token
if relaxed_decoding:
# Expected sequence length
expected_seq_len = self.time_horizon * self.action_dim
diff = expected_seq_len - decoded_dct_coeff.shape[0]
# Apply truncation if too long
if diff < 0:
decoded_dct_coeff = decoded_dct_coeff[:expected_seq_len] # Truncate on the right
# Apply padding if too short
elif diff > 0:
decoded_dct_coeff = np.pad(
decoded_dct_coeff, (0, diff), mode="constant", constant_values=0
)
decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
assert decoded_dct_coeff.shape == (
self.time_horizon,
self.action_dim,
), (
f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
)
except Exception as e:
print(f"Error decoding tokens: {e}")
print(f"Tokens: {token}")
decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
decoded_actions.append(idct(decoded_dct_coeff / self.fast_tokenizer.scale, axis=0, norm="ortho"))
return np.stack(decoded_actions)
def extract_actions(self, tokens: torch.Tensor, action_horizon: int, action_dim: int) -> torch.Tensor:
"""
Extracts actions from predicted output tokens using the FAST model.
Args:
tokens (torch.Tensor): The input tensor of tokenized outputs.
action_horizon (int): The number of timesteps for actions.
action_dim (int): The dimensionality of each action.
Returns:
torch.Tensor: The extracted actions as a tensor of shape (action_horizon, action_dim).
"""
# Decode predicted output tokens
decoded_tokens = self.paligemma_tokenizer.batch_decode(tokens, skip_special_tokens=True)
cleaned_tokens = [
tokens_sequence.replace("Action:", "").replace(":", "").strip().split("|")[0].strip()
for tokens_sequence in decoded_tokens
]
raw_action_tokens = [
self.processor.tokenizer.encode(sample_tokens, return_tensors="pt", padding=False)
for sample_tokens in cleaned_tokens
] # something like this should be robust #looks good
action_tokens = [
self._act_tokens_to_paligemma_tokens(raw_action_token) for raw_action_token in raw_action_tokens
]
# returns the tensor of decoded actions per sample in a list
decoded_actions = [
torch.tensor(
self.decode_actions_with_fast(
tok.tolist(),
time_horizon=action_horizon,
action_dim=action_dim,
relaxed_decoding=self.config.relaxed_action_decoding,
),
device=tokens.device,
).squeeze(0)
for tok in action_tokens
]
return torch.stack(
decoded_actions,
dim=0,
)
def generate_actions(self, batch: dict[str, Tensor]):
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(state=batch[OBS_ROBOT], lang_text=batch["task"], actions=None)
embs, pad_masks, att_masks2, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side="left",
)
token_type_ids = token_type_ids.to(dtype=torch.int64)
prefix_position_ids = torch.cumsum(pad_masks, dim=1) - 1
output_tokens = self.pi0_paligemma.generate(
input_ids=None,
attention_mask=pad_masks,
position_ids=prefix_position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=self.config.use_cache,
max_new_tokens=self.config.max_decoding_steps,
do_sample=False,
num_beams=1,
token_type_ids=token_type_ids,
)
actions = self.extract_actions(output_tokens, self.action_horizon, self.action_dim)
return actions
def embed_image(self, image: torch.Tensor):
return self.pi0_paligemma.get_image_features(image)
def embed_inputs(
self,
images,
img_masks,
tokens,
pad_mask,
ar_mask,
loss_mask,
token_type_ids,
padding_side: str = "right",
):
# TODO: avoid list in python and torch.cat ; prefer pre-allocation with torch.empty
# images are a list of same size
# vectorizing everything!
device = images[0].device
image_embedding_dim = images[0].shape[-1] # TODO should be from self.config
all_images = torch.stack(images, dim=1).to(device)
b, n, c, h, w = all_images.shape
all_images = all_images.view(b * n, c, h, w)
embedded = self.embed_image(all_images).to(device)
b_n, p, image_embedding_dim = embedded.shape # Extract current dimensions
m = b_n // b # Compute the number of images per sample dynamically
# Reshape dynamically
embedded = embedded.view(b, m, p, image_embedding_dim)
tokens_embs = self.embed_tokens(tokens.to(device))
img_masks = torch.stack(img_masks, dim=1).unsqueeze(-1).to(device)
num_img_emb = embedded.shape[2]
img_pad_masks = img_masks.repeat(1, 1, num_img_emb).view(b, -1)
img_att_masks = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
image_target_tokens = (
torch.ones((b, n, num_img_emb), dtype=torch.long, device=device) * self.pad_token_id
).reshape(b, -1)
image_loss_mask = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
embedded = embedded.reshape(b, n * num_img_emb, image_embedding_dim) # Shape: (B, N*P, D)
embs = torch.cat([embedded, tokens_embs], dim=1).to(device)
pad_masks = torch.cat([img_pad_masks, pad_mask.to(device)], dim=1)
att_masks = torch.cat([img_att_masks, ar_mask.to(device)], dim=1)
loss_masks = torch.cat([image_loss_mask, loss_mask.to(device)], dim=1)
targets = torch.cat([image_target_tokens, tokens.to(device)], dim=1)
token_type_ids = torch.cat([img_att_masks, token_type_ids.to(device)], dim=1)
# Shift pad tokens to the left (.generate()) or right (.train())
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids = self.shift_padding_side(
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids, padding_side=padding_side
)
targets = torch.where(targets == self.pad_token_id, self.ignore_index, targets)
return embs, pad_masks, att_masks, targets, loss_masks, token_type_ids
def resize_with_pad(img, width, height, pad_value=0, interpolate_like_pi=True):
# assume no-op when width height fits already
if img.ndim != 4:
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
cur_height, cur_width = img.shape[2:]
ratio = max(cur_width / width, cur_height / height)
resized_height = int(cur_height / ratio)
resized_width = int(cur_width / ratio)
if interpolate_like_pi:
img = (img * 255.0).to(dtype=torch.uint8)
img = img.permute(0, 2, 3, 1)
original_device = img.device
img = img.to(device="cpu").numpy()
imgs = []
for sub_img in img:
sub_img = Image.fromarray(sub_img)
resized_img = sub_img.resize((resized_width, resized_height), resample=2)
resized_img = torch.from_numpy(np.array(resized_img))
imgs.append(resized_img)
img = torch.stack(imgs, dim=0)
img = img.permute(0, 3, 1, 2)
resized_img = img.to(device=original_device, dtype=torch.float32) / 255.0
else:
resized_img = F.interpolate(
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
pad_height = max(0, int(height - resized_height))
pad_width = max(0, int(width - resized_width))
# pad on left and top of image
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
return padded_img
|