Spaces:
Running
Running
File size: 54,106 Bytes
529ed6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 |
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
from math import ceil
from random import randrange
from typing import Callable
import torch
import torch.distributed as distributed
import torch.nn.functional as F # noqa: N812
from einops import pack, rearrange, reduce, repeat, unpack
from torch import einsum, nn
from torch.cuda.amp import autocast
from torch.optim import Optimizer
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
# ruff: noqa: N806
"""
This file is part of a VQ-BeT that utilizes code from the following repositories:
- Vector Quantize PyTorch code is licensed under the MIT License:
Original source: https://github.com/lucidrains/vector-quantize-pytorch
- nanoGPT part is an adaptation of Andrej Karpathy's nanoGPT implementation in PyTorch.
Original source: https://github.com/karpathy/nanoGPT
We also made some changes to the original code to adapt it to our needs. The changes are described in the code below.
"""
"""
This is a part for nanoGPT that utilizes code from the following repository:
- Andrej Karpathy's nanoGPT implementation in PyTorch.
Original source: https://github.com/karpathy/nanoGPT
- The nanoGPT code is licensed under the MIT License:
MIT License
Copyright (c) 2022 Andrej Karpathy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
- We've made some changes to the original code to adapt it to our needs.
Changed variable names:
- n_head -> gpt_n_head
- n_embd -> gpt_hidden_dim
- block_size -> gpt_block_size
- n_layer -> gpt_n_layer
class GPT(nn.Module):
- removed unused functions `def generate`, `def estimate_mfu`, and `def from_pretrained`
- changed the `configure_optimizers` to `def configure_parameters` and made it to return only the parameters of the model: we use an external optimizer in our training loop.
- in the function `forward`, we removed target loss calculation parts, since it will be calculated in the training loop (after passing through bin prediction and offset prediction heads).
"""
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.gpt_hidden_dim % config.gpt_n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.gpt_hidden_dim, 3 * config.gpt_hidden_dim)
# output projection
self.c_proj = nn.Linear(config.gpt_hidden_dim, config.gpt_hidden_dim)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.gpt_block_size, config.gpt_block_size)).view(
1, 1, config.gpt_block_size, config.gpt_block_size
),
)
self.gpt_n_head = config.gpt_n_head
self.gpt_hidden_dim = config.gpt_hidden_dim
def forward(self, x):
(
B,
T,
C,
) = x.size() # batch size, sequence length, embedding dimensionality (gpt_hidden_dim)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.gpt_hidden_dim, dim=2)
k = k.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.gpt_n_head, C // self.gpt_n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class Block(nn.Module):
# causual self-attention block for GPT
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.gpt_hidden_dim)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.gpt_hidden_dim)
self.mlp = nn.Sequential(
nn.Linear(config.gpt_hidden_dim, 4 * config.gpt_hidden_dim),
nn.GELU(),
nn.Linear(4 * config.gpt_hidden_dim, config.gpt_hidden_dim),
nn.Dropout(config.dropout),
)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
"""
Original comments:
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
def __init__(self, config: VQBeTConfig):
"""
GPT model gets hyperparameters from a config object. Please refer configuration_vqbet.py for more details.
"""
super().__init__()
assert config.gpt_output_dim is not None
assert config.gpt_block_size is not None
self.config = config
self.transformer = nn.ModuleDict(
{
"wte": nn.Linear(config.gpt_input_dim, config.gpt_hidden_dim),
"wpe": nn.Embedding(config.gpt_block_size, config.gpt_hidden_dim),
"drop": nn.Dropout(config.dropout),
"h": nn.ModuleList([Block(config) for _ in range(config.gpt_n_layer)]),
"ln_f": nn.LayerNorm(config.gpt_hidden_dim),
}
)
self.lm_head = nn.Linear(config.gpt_hidden_dim, config.gpt_output_dim, bias=False)
# init all weights, and apply a special scaled init to the residual projections, per GPT-2 paper
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.gpt_n_layer))
# report number of parameters
n_params = sum(p.numel() for p in self.parameters())
print("number of parameters: {:.2f}M".format(n_params / 1e6))
def forward(self, input, targets=None):
device = input.device
b, t, d = input.size()
assert t <= self.config.gpt_block_size, (
f"Cannot forward sequence of length {t}, block size is only {self.config.gpt_block_size}"
)
# positional encodings that are added to the input embeddings
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# forward the GPT model itself
tok_emb = self.transformer.wte(input) # token embeddings of shape (b, t, gpt_hidden_dim)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, gpt_hidden_dim)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
return logits
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.zeros_(module.bias)
torch.nn.init.ones_(module.weight)
def crop_block_size(self, gpt_block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert gpt_block_size <= self.config.gpt_block_size
self.config.gpt_block_size = gpt_block_size
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:gpt_block_size])
for block in self.transformer.h:
block.attn.bias = block.attn.bias[:, :, :gpt_block_size, :gpt_block_size]
def configure_parameters(self):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear,)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, _p in m.named_parameters():
fpn = "{}.{}".format(mn, pn) if mn else pn # full param name
if pn.endswith("bias"):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# validate that we considered every parameter
param_dict = dict(self.named_parameters())
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters {} made it into both decay/no_decay sets!".format(
str(inter_params)
)
assert len(param_dict.keys() - union_params) == 0, (
"parameters {} were not separated into either decay/no_decay set!".format(
str(param_dict.keys() - union_params),
)
)
decay = [param_dict[pn] for pn in sorted(decay)]
no_decay = [param_dict[pn] for pn in sorted(no_decay)]
# return the parameters that require weight decay, and the parameters that don't separately.
return decay, no_decay
"""
This file is a part for Residual Vector Quantization that utilizes code from the following repository:
- Phil Wang's vector-quantize-pytorch implementation in PyTorch.
Original source: https://github.com/lucidrains/vector-quantize-pytorch
- The vector-quantize-pytorch code is licensed under the MIT License:
MIT License
Copyright (c) 2020 Phil Wang
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
- We've made some changes to the original code to adapt it to our needs.
class ResidualVQ(nn.Module):
- added `self.register_buffer('freeze_codebook', torch.tensor(False))` to the __init__ method:
This enables the user to save an indicator whether the codebook is frozen or not.
- changed the name of function `get_codes_from_indices` → `get_codebook_vector_from_indices`:
This is to make the function name more descriptive.
class VectorQuantize(nn.Module):
- removed the `use_cosine_sim` and `layernorm_after_project_in` parameters from the __init__ method:
These parameters are not used in the code.
- changed the name of function `get_codes_from_indices` → `get_codebook_vector_from_indices`:
This is to make the function name more descriptive.
"""
class ResidualVQ(nn.Module):
"""
Residual VQ is composed of multiple VectorQuantize layers.
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"Residual Vector Quantizer (a.k.a. multi-stage vector quantizer [36]) cascades Nq layers of VQ as follows. The unquantized input vector is
passed through a first VQ and quantization residuals are computed. The residuals are then iteratively quantized by a sequence of additional
Nq -1 vector quantizers, as described in Algorithm 1."
self.project_in: function for projecting input to codebook dimension
self.project_out: function for projecting codebook dimension to output dimension
self.layers: nn.ModuleList of VectorQuantize layers that contains Nq layers of VQ as described in the paper.
self.freeze_codebook: buffer to save an indicator whether the codebook is frozen or not. VQ-BeT will check this to determine whether to update the codebook or not.
"""
def __init__(
self,
*,
dim,
num_quantizers,
codebook_dim=None,
shared_codebook=False,
heads=1,
quantize_dropout=False,
quantize_dropout_cutoff_index=0,
quantize_dropout_multiple_of=1,
accept_image_fmap=False,
**kwargs,
):
super().__init__()
assert heads == 1, "residual vq is not compatible with multi-headed codes"
codebook_dim = codebook_dim if (codebook_dim is not None) else dim
codebook_input_dim = codebook_dim * heads
requires_projection = codebook_input_dim != dim
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
self.num_quantizers = num_quantizers
self.accept_image_fmap = accept_image_fmap
self.layers = nn.ModuleList(
[
VectorQuantize(
dim=codebook_dim, codebook_dim=codebook_dim, accept_image_fmap=accept_image_fmap, **kwargs
)
for _ in range(num_quantizers)
]
)
self.quantize_dropout = quantize_dropout and num_quantizers > 1
assert quantize_dropout_cutoff_index >= 0
self.register_buffer("freeze_codebook", torch.tensor(False))
self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4
if not shared_codebook:
return
first_vq, *rest_vq = self.layers
codebook = first_vq._codebook
for vq in rest_vq:
vq._codebook = codebook
@property
def codebooks(self):
codebooks = [layer._codebook.embed for layer in self.layers]
codebooks = torch.stack(codebooks, dim=0)
codebooks = rearrange(codebooks, "q 1 c d -> q c d")
return codebooks
def get_codebook_vector_from_indices(self, indices):
# this function will return the codes from all codebooks across layers corresponding to the indices
batch, quantize_dim = indices.shape[0], indices.shape[-1]
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
indices, ps = pack([indices], "b * q")
# because of quantize dropout, one can pass in indices that are coarse
# and the network should be able to reconstruct
if quantize_dim < self.num_quantizers:
assert self.quantize_dropout > 0.0, (
"quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
)
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1)
# get ready for gathering
codebooks = repeat(self.codebooks, "q c d -> q b c d", b=batch)
gather_indices = repeat(indices, "b n q -> q b n d", d=codebooks.shape[-1])
# take care of quantizer dropout
mask = gather_indices == -1.0
gather_indices = gather_indices.masked_fill(
mask, 0
) # have it fetch a dummy code to be masked out later
all_codes = codebooks.gather(2, gather_indices) # gather all codes
# mask out any codes that were dropout-ed
all_codes = all_codes.masked_fill(mask, 0.0)
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
(all_codes,) = unpack(all_codes, ps, "q b * d")
return all_codes
def forward(self, x, indices=None, return_all_codes=False, sample_codebook_temp=None):
"""
For given input tensor x, this function will return the quantized output, the indices of the quantized output, and the loss.
First, the input tensor x is projected to the codebook dimension. Then, the input tensor x is passed through Nq layers of VectorQuantize.
The residual value of each layer is fed to the next layer.
"""
num_quant, quant_dropout_multiple_of, return_loss, device = (
self.num_quantizers,
self.quantize_dropout_multiple_of,
(indices is not None),
x.device,
)
x = self.project_in(x)
assert not (self.accept_image_fmap and (indices is not None))
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
if return_loss:
assert not torch.any(indices == -1), (
"some of the residual vq indices were dropped out. please use indices derived when the module is in eval mode to derive cross entropy loss"
)
ce_losses = []
should_quantize_dropout = self.training and self.quantize_dropout and not return_loss
# sample a layer index at which to dropout further residual quantization
# also prepare null indices and loss
if should_quantize_dropout:
rand_quantize_dropout_index = randrange(self.quantize_dropout_cutoff_index, num_quant)
if quant_dropout_multiple_of != 1:
rand_quantize_dropout_index = (
ceil((rand_quantize_dropout_index + 1) / quant_dropout_multiple_of)
* quant_dropout_multiple_of
- 1
)
null_indices_shape = (x.shape[0], *x.shape[-2:]) if self.accept_image_fmap else tuple(x.shape[:2])
null_indices = torch.full(null_indices_shape, -1.0, device=device, dtype=torch.long)
null_loss = torch.full((1,), 0.0, device=device, dtype=x.dtype)
# go through the layers
for quantizer_index, layer in enumerate(self.layers):
if should_quantize_dropout and quantizer_index > rand_quantize_dropout_index:
all_indices.append(null_indices)
all_losses.append(null_loss)
continue
layer_indices = None
if return_loss:
layer_indices = indices[..., quantizer_index]
quantized, *rest = layer(
residual,
indices=layer_indices,
sample_codebook_temp=sample_codebook_temp,
freeze_codebook=self.freeze_codebook,
)
residual = residual - quantized.detach()
quantized_out = quantized_out + quantized
if return_loss:
ce_loss = rest[0]
ce_losses.append(ce_loss)
continue
embed_indices, loss = rest
all_indices.append(embed_indices)
all_losses.append(loss)
# project out, if needed
quantized_out = self.project_out(quantized_out)
# whether to early return the cross entropy loss
if return_loss:
return quantized_out, sum(ce_losses)
# stack all losses and indices
all_losses, all_indices = map(partial(torch.stack, dim=-1), (all_losses, all_indices))
ret = (quantized_out, all_indices, all_losses)
if return_all_codes:
# whether to return all codes from all codebooks across layers
all_codes = self.get_codebook_vector_from_indices(all_indices)
# will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
ret = (*ret, all_codes)
return ret
class VectorQuantize(nn.Module):
def __init__(
self,
dim,
codebook_size,
codebook_dim=None,
heads=1,
separate_codebook_per_head=False,
decay=0.8,
eps=1e-5,
kmeans_init=False,
kmeans_iters=10,
sync_kmeans=True,
threshold_ema_dead_code=0,
channel_last=True,
accept_image_fmap=False,
commitment_weight=1.0,
commitment_use_cross_entropy_loss=False,
orthogonal_reg_weight=0.0,
orthogonal_reg_active_codes_only=False,
orthogonal_reg_max_codes=None,
stochastic_sample_codes=False,
sample_codebook_temp=1.0,
straight_through=False,
reinmax=False, # using reinmax for improved straight-through, assuming straight through helps at all
sync_codebook=None,
sync_affine_param=False,
ema_update=True,
learnable_codebook=False,
in_place_codebook_optimizer: Callable[
..., Optimizer
] = None, # Optimizer used to update the codebook embedding if using learnable_codebook
affine_param=False,
affine_param_batch_decay=0.99,
affine_param_codebook_decay=0.9,
sync_update_v=0.0, # the v that controls optimistic vs pessimistic update for synchronous update rule (21) https://minyoungg.github.io/vqtorch/assets/draft_050523.pdf
):
super().__init__()
self.dim = dim
self.heads = heads
self.separate_codebook_per_head = separate_codebook_per_head
codebook_dim = codebook_dim if (codebook_dim is not None) else dim
codebook_input_dim = codebook_dim * heads
requires_projection = codebook_input_dim != dim
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
self.eps = eps
self.commitment_weight = commitment_weight
self.commitment_use_cross_entropy_loss = commitment_use_cross_entropy_loss # whether to use cross entropy loss to codebook as commitment loss
self.learnable_codebook = learnable_codebook
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
self.has_codebook_orthogonal_loss = has_codebook_orthogonal_loss
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
assert not (ema_update and learnable_codebook), "learnable codebook not compatible with EMA update"
assert 0 <= sync_update_v <= 1.0
assert not (sync_update_v > 0.0 and not learnable_codebook), "learnable codebook must be turned on"
self.sync_update_v = sync_update_v
gumbel_sample_fn = partial(
gumbel_sample,
stochastic=stochastic_sample_codes,
reinmax=reinmax,
straight_through=straight_through,
)
if sync_codebook is None:
sync_codebook = distributed.is_initialized() and distributed.get_world_size() > 1
codebook_kwargs = {
"dim": codebook_dim,
"num_codebooks": heads if separate_codebook_per_head else 1,
"codebook_size": codebook_size,
"kmeans_init": kmeans_init,
"kmeans_iters": kmeans_iters,
"sync_kmeans": sync_kmeans,
"decay": decay,
"eps": eps,
"threshold_ema_dead_code": threshold_ema_dead_code,
"use_ddp": sync_codebook,
"learnable_codebook": has_codebook_orthogonal_loss or learnable_codebook,
"sample_codebook_temp": sample_codebook_temp,
"gumbel_sample": gumbel_sample_fn,
"ema_update": ema_update,
}
if affine_param:
codebook_kwargs = dict(
**codebook_kwargs,
affine_param=True,
sync_affine_param=sync_affine_param,
affine_param_batch_decay=affine_param_batch_decay,
affine_param_codebook_decay=affine_param_codebook_decay,
)
self._codebook = EuclideanCodebook(**codebook_kwargs)
self.in_place_codebook_optimizer = (
in_place_codebook_optimizer(self._codebook.parameters())
if (in_place_codebook_optimizer is not None)
else None
)
self.codebook_size = codebook_size
self.accept_image_fmap = accept_image_fmap
self.channel_last = channel_last
@property
def codebook(self):
codebook = self._codebook.embed
if self.separate_codebook_per_head:
return codebook
return rearrange(codebook, "1 ... -> ...")
@codebook.setter
def codebook(self, codes):
if not self.separate_codebook_per_head:
codes = rearrange(codes, "... -> 1 ...")
self._codebook.embed.copy_(codes)
def get_codebook_vector_from_indices(self, indices):
codebook = self.codebook
is_multiheaded = codebook.ndim > 2
if not is_multiheaded:
codes = codebook[indices]
return rearrange(codes, "... h d -> ... (h d)")
indices, ps = pack_one(indices, "b * h")
indices = rearrange(indices, "b n h -> b h n")
indices = repeat(indices, "b h n -> b h n d", d=codebook.shape[-1])
codebook = repeat(codebook, "h n d -> b h n d", b=indices.shape[0])
codes = codebook.gather(2, indices)
codes = rearrange(codes, "b h n d -> b n (h d)")
codes = unpack_one(codes, ps, "b * d")
return codes
def forward(
self,
x,
indices=None,
mask=None,
sample_codebook_temp=None,
freeze_codebook=False,
):
orig_input = x
only_one = x.ndim == 2
if only_one:
assert mask is None
x = rearrange(x, "b d -> b 1 d")
shape, device, heads, is_multiheaded, _codebook_size, return_loss = (
x.shape,
x.device,
self.heads,
self.heads > 1,
self.codebook_size,
(indices is not None),
)
need_transpose = not self.channel_last and not self.accept_image_fmap
should_inplace_optimize = self.in_place_codebook_optimizer is not None
# rearrange inputs
if self.accept_image_fmap:
height, width = x.shape[-2:]
x = rearrange(x, "b c h w -> b (h w) c")
if need_transpose:
x = rearrange(x, "b d n -> b n d")
# project input
x = self.project_in(x)
# handle multi-headed separate codebooks
if is_multiheaded:
ein_rhs_eq = "h b n d" if self.separate_codebook_per_head else "1 (b h) n d"
x = rearrange(x, f"b n (h d) -> {ein_rhs_eq}", h=heads)
# l2norm for cosine sim, otherwise identity
x = self._codebook.transform_input(x)
# codebook forward kwargs
codebook_forward_kwargs = {
"sample_codebook_temp": sample_codebook_temp,
"mask": mask,
"freeze_codebook": freeze_codebook,
}
# quantize
quantize, embed_ind, distances = self._codebook(x, **codebook_forward_kwargs)
# one step in-place update
if should_inplace_optimize and self.training and not freeze_codebook:
if mask is not None:
loss = F.mse_loss(quantize, x.detach(), reduction="none")
loss_mask = mask
if is_multiheaded:
loss_mask = repeat(
mask,
"b n -> c (b h) n",
c=loss.shape[0],
h=loss.shape[1] // mask.shape[0],
)
loss = loss[loss_mask].mean()
else:
loss = F.mse_loss(quantize, x.detach())
loss.backward()
self.in_place_codebook_optimizer.step()
self.in_place_codebook_optimizer.zero_grad()
# quantize again
quantize, embed_ind, distances = self._codebook(x, **codebook_forward_kwargs)
if self.training:
# determine code to use for commitment loss
maybe_detach = torch.detach if not self.learnable_codebook or freeze_codebook else identity
commit_quantize = maybe_detach(quantize)
# straight through
quantize = x + (quantize - x).detach()
if self.sync_update_v > 0.0:
# (21) in https://minyoungg.github.io/vqtorch/assets/draft_050523.pdf
quantize = quantize + self.sync_update_v * (quantize - quantize.detach())
# function for calculating cross entropy loss to distance matrix
# used for (1) naturalspeech2 training residual vq latents to be close to the correct codes and (2) cross-entropy based commitment loss
def calculate_ce_loss(codes):
if not is_multiheaded:
dist_einops_eq = "1 b n l -> b l n"
elif self.separate_codebook_per_head:
dist_einops_eq = "c b n l -> b l n c"
else:
dist_einops_eq = "1 (b h) n l -> b l n h"
ce_loss = F.cross_entropy(
rearrange(distances, dist_einops_eq, b=shape[0]), codes, ignore_index=-1
)
return ce_loss
# if returning cross entropy loss on codes that were passed in
if return_loss:
return quantize, calculate_ce_loss(indices)
# transform embedding indices
if is_multiheaded:
if self.separate_codebook_per_head:
embed_ind = rearrange(embed_ind, "h b n -> b n h", h=heads)
else:
embed_ind = rearrange(embed_ind, "1 (b h) n -> b n h", h=heads)
if self.accept_image_fmap:
embed_ind = rearrange(embed_ind, "b (h w) ... -> b h w ...", h=height, w=width)
if only_one:
embed_ind = rearrange(embed_ind, "b 1 -> b")
# aggregate loss
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
if self.commitment_use_cross_entropy_loss:
if mask is not None:
ce_loss_mask = mask
if is_multiheaded:
ce_loss_mask = repeat(ce_loss_mask, "b n -> b n h", h=heads)
embed_ind.masked_fill_(~ce_loss_mask, -1)
commit_loss = calculate_ce_loss(embed_ind)
else:
if mask is not None:
# with variable lengthed sequences
commit_loss = F.mse_loss(commit_quantize, x, reduction="none")
loss_mask = mask
if is_multiheaded:
loss_mask = repeat(
loss_mask,
"b n -> c (b h) n",
c=commit_loss.shape[0],
h=commit_loss.shape[1] // mask.shape[0],
)
commit_loss = commit_loss[loss_mask].mean()
else:
commit_loss = F.mse_loss(commit_quantize, x)
loss = loss + commit_loss * self.commitment_weight
if self.has_codebook_orthogonal_loss:
codebook = self._codebook.embed
# only calculate orthogonal loss for the activated codes for this batch
if self.orthogonal_reg_active_codes_only:
assert not (is_multiheaded and self.separate_codebook_per_head), (
"orthogonal regularization for only active codes not compatible with multi-headed with separate codebooks yet"
)
unique_code_ids = torch.unique(embed_ind)
codebook = codebook[:, unique_code_ids]
num_codes = codebook.shape[-2]
if (self.orthogonal_reg_max_codes is not None) and num_codes > self.orthogonal_reg_max_codes:
rand_ids = torch.randperm(num_codes, device=device)[: self.orthogonal_reg_max_codes]
codebook = codebook[:, rand_ids]
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
# handle multi-headed quantized embeddings
if is_multiheaded:
if self.separate_codebook_per_head:
quantize = rearrange(quantize, "h b n d -> b n (h d)", h=heads)
else:
quantize = rearrange(quantize, "1 (b h) n d -> b n (h d)", h=heads)
# project out
quantize = self.project_out(quantize)
# rearrange quantized embeddings
if need_transpose:
quantize = rearrange(quantize, "b n d -> b d n")
if self.accept_image_fmap:
quantize = rearrange(quantize, "b (h w) c -> b c h w", h=height, w=width)
if only_one:
quantize = rearrange(quantize, "b 1 d -> b d")
# if masking, only return quantized for where mask has True
if mask is not None:
quantize = torch.where(rearrange(mask, "... -> ... 1"), quantize, orig_input)
return quantize, embed_ind, loss
def noop(*args, **kwargs):
pass
def identity(t):
return t
def cdist(x, y):
x2 = reduce(x**2, "b n d -> b n", "sum")
y2 = reduce(y**2, "b n d -> b n", "sum")
xy = einsum("b i d, b j d -> b i j", x, y) * -2
return (rearrange(x2, "b i -> b i 1") + rearrange(y2, "b j -> b 1 j") + xy).sqrt()
def log(t, eps=1e-20):
return torch.log(t.clamp(min=eps))
def ema_inplace(old, new, decay):
is_mps = str(old.device).startswith("mps:")
if not is_mps:
old.lerp_(new, 1 - decay)
else:
old.mul_(decay).add_(new * (1 - decay))
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def uniform_init(*shape):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(
logits,
temperature=1.0,
stochastic=False,
straight_through=False,
reinmax=False,
dim=-1,
training=True,
):
dtype, size = logits.dtype, logits.shape[dim]
if training and stochastic and temperature > 0:
sampling_logits = (logits / temperature) + gumbel_noise(logits)
else:
sampling_logits = logits
ind = sampling_logits.argmax(dim=dim)
one_hot = F.one_hot(ind, size).type(dtype)
assert not (reinmax and not straight_through), (
"reinmax can only be turned on if using straight through gumbel softmax"
)
if not straight_through or temperature <= 0.0 or not training:
return ind, one_hot
# use reinmax for better second-order accuracy - https://arxiv.org/abs/2304.08612
# algorithm 2
if reinmax:
π0 = logits.softmax(dim=dim)
π1 = (one_hot + (logits / temperature).softmax(dim=dim)) / 2
π1 = ((log(π1) - logits).detach() + logits).softmax(dim=1)
π2 = 2 * π1 - 0.5 * π0
one_hot = π2 - π2.detach() + one_hot
else:
π1 = (logits / temperature).softmax(dim=dim)
one_hot = one_hot + π1 - π1.detach()
return ind, one_hot
def laplace_smoothing(x, n_categories, eps=1e-5, dim=-1):
denom = x.sum(dim=dim, keepdim=True)
return (x + eps) / (denom + n_categories * eps)
def sample_vectors(samples, num):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def batched_sample_vectors(samples, num):
return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim=0)], dim=0)
def pad_shape(shape, size, dim=0):
return [size if i == dim else s for i, s in enumerate(shape)]
def sample_multinomial(total_count, probs):
device = probs.device
probs = probs.cpu()
total_count = probs.new_full((), total_count)
remainder = probs.new_ones(())
sample = torch.empty_like(probs, dtype=torch.long)
for i, p in enumerate(probs):
s = torch.binomial(total_count, p / remainder)
sample[i] = s
total_count -= s
remainder -= p
return sample.to(device)
def all_gather_sizes(x, dim):
size = torch.tensor(x.shape[dim], dtype=torch.long, device=x.device)
all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())]
distributed.all_gather(all_sizes, size)
return torch.stack(all_sizes)
def all_gather_variably_sized(x, sizes, dim=0):
rank = distributed.get_rank()
all_x = []
for i, size in enumerate(sizes):
t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim))
distributed.broadcast(t, src=i, async_op=True)
all_x.append(t)
distributed.barrier()
return all_x
def sample_vectors_distributed(local_samples, num):
local_samples = rearrange(local_samples, "1 ... -> ...")
rank = distributed.get_rank()
all_num_samples = all_gather_sizes(local_samples, dim=0)
if rank == 0:
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum())
else:
samples_per_rank = torch.empty_like(all_num_samples)
distributed.broadcast(samples_per_rank, src=0)
samples_per_rank = samples_per_rank.tolist()
local_samples = sample_vectors(local_samples, samples_per_rank[rank])
all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim=0)
out = torch.cat(all_samples, dim=0)
return rearrange(out, "... -> 1 ...")
def batched_bincount(x, *, minlength):
batch, dtype, device = x.shape[0], x.dtype, x.device
target = torch.zeros(batch, minlength, dtype=dtype, device=device)
values = torch.ones_like(x)
target.scatter_add_(-1, x, values)
return target
def kmeans(
samples,
num_clusters,
num_iters=10,
sample_fn=batched_sample_vectors,
all_reduce_fn=noop,
):
num_codebooks, dim, dtype, _device = (
samples.shape[0],
samples.shape[-1],
samples.dtype,
samples.device,
)
means = sample_fn(samples, num_clusters)
for _ in range(num_iters):
dists = -torch.cdist(samples, means, p=2)
buckets = torch.argmax(dists, dim=-1)
bins = batched_bincount(buckets, minlength=num_clusters)
all_reduce_fn(bins)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype=dtype)
new_means.scatter_add_(1, repeat(buckets, "h n -> h n d", d=dim), samples)
new_means = new_means / rearrange(bins_min_clamped, "... -> ... 1")
all_reduce_fn(new_means)
means = torch.where(rearrange(zero_mask, "... -> ... 1"), means, new_means)
return means, bins
def batched_embedding(indices, embeds):
batch, dim = indices.shape[1], embeds.shape[-1]
indices = repeat(indices, "h b n -> h b n d", d=dim)
embeds = repeat(embeds, "h c d -> h b c d", b=batch)
return embeds.gather(2, indices)
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
h, n = t.shape[:2]
normed_codes = F.normalize(t, p=2, dim=-1)
cosine_sim = einsum("h i d, h j d -> h i j", normed_codes, normed_codes)
return (cosine_sim**2).sum() / (h * n**2) - (1 / n)
class EuclideanCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
num_codebooks=1,
kmeans_init=False,
kmeans_iters=10,
sync_kmeans=True,
decay=0.8,
eps=1e-5,
threshold_ema_dead_code=2,
reset_cluster_size=None,
use_ddp=False,
learnable_codebook=False,
gumbel_sample=gumbel_sample,
sample_codebook_temp=1.0,
ema_update=True,
affine_param=False,
sync_affine_param=False,
affine_param_batch_decay=0.99,
affine_param_codebook_decay=0.9,
):
super().__init__()
self.transform_input = identity
self.decay = decay
self.ema_update = ema_update
init_fn = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(num_codebooks, codebook_size, dim)
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.reset_cluster_size = (
reset_cluster_size if (reset_cluster_size is not None) else threshold_ema_dead_code
)
assert callable(gumbel_sample)
self.gumbel_sample = gumbel_sample
self.sample_codebook_temp = sample_codebook_temp
assert not (use_ddp and num_codebooks > 1 and kmeans_init), (
"kmeans init is not compatible with multiple codebooks in distributed environment for now"
)
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
self.register_buffer("initted", torch.Tensor([not kmeans_init]))
self.register_buffer("cluster_size", torch.zeros(num_codebooks, codebook_size))
self.register_buffer("embed_avg", embed.clone())
self.learnable_codebook = learnable_codebook
if learnable_codebook:
self.embed = nn.Parameter(embed)
else:
self.register_buffer("embed", embed)
# affine related params
self.affine_param = affine_param
self.sync_affine_param = sync_affine_param
if not affine_param:
return
self.affine_param_batch_decay = affine_param_batch_decay
self.affine_param_codebook_decay = affine_param_codebook_decay
self.register_buffer("batch_mean", None)
self.register_buffer("batch_variance", None)
self.register_buffer("codebook_mean_needs_init", torch.Tensor([True]))
self.register_buffer("codebook_mean", torch.empty(num_codebooks, 1, dim))
self.register_buffer("codebook_variance_needs_init", torch.Tensor([True]))
self.register_buffer("codebook_variance", torch.empty(num_codebooks, 1, dim))
@torch.jit.ignore
def init_embed_(self, data, mask=None):
if self.initted:
return
if mask is not None:
c = data.shape[0]
data = rearrange(data[mask], "(c n) d -> c n d", c=c)
embed, cluster_size = kmeans(
data,
self.codebook_size,
self.kmeans_iters,
sample_fn=self.sample_fn,
all_reduce_fn=self.kmeans_all_reduce_fn,
)
embed_sum = embed * rearrange(cluster_size, "... -> ... 1")
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed_sum)
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
@torch.jit.ignore
def update_with_decay(self, buffer_name, new_value, decay):
old_value = getattr(self, buffer_name)
needs_init = getattr(self, buffer_name + "_needs_init", False)
if needs_init:
self.register_buffer(buffer_name + "_needs_init", torch.Tensor([False]))
if not (old_value is not None) or needs_init:
self.register_buffer(buffer_name, new_value.detach())
return
value = old_value * decay + new_value.detach() * (1 - decay)
self.register_buffer(buffer_name, value)
@torch.jit.ignore
def update_affine(self, data, embed, mask=None):
assert self.affine_param
var_fn = partial(torch.var, unbiased=False)
# calculate codebook mean and variance
embed = rearrange(embed, "h ... d -> h (...) d")
if self.training:
self.update_with_decay(
"codebook_mean",
reduce(embed, "h n d -> h 1 d", "mean"),
self.affine_param_codebook_decay,
)
self.update_with_decay(
"codebook_variance",
reduce(embed, "h n d -> h 1 d", var_fn),
self.affine_param_codebook_decay,
)
# prepare batch data, which depends on whether it has masking
data = rearrange(data, "h ... d -> h (...) d")
if mask is not None:
c = data.shape[0]
data = rearrange(data[mask], "(c n) d -> c n d", c=c)
# calculate batch mean and variance
if not self.sync_affine_param:
self.update_with_decay(
"batch_mean",
reduce(data, "h n d -> h 1 d", "mean"),
self.affine_param_batch_decay,
)
self.update_with_decay(
"batch_variance",
reduce(data, "h n d -> h 1 d", var_fn),
self.affine_param_batch_decay,
)
return
num_vectors, device, dtype = data.shape[-2], data.device, data.dtype
# number of vectors, for denominator
num_vectors = torch.tensor([num_vectors], device=device, dtype=dtype)
distributed.all_reduce(num_vectors)
# calculate distributed mean
batch_sum = reduce(data, "h n d -> h 1 d", "sum")
distributed.all_reduce(batch_sum)
batch_mean = batch_sum / num_vectors
self.update_with_decay("batch_mean", batch_mean, self.affine_param_batch_decay)
# calculate distributed variance
variance_number = reduce((data - batch_mean) ** 2, "h n d -> h 1 d", "sum")
distributed.all_reduce(variance_number)
batch_variance = variance_number / num_vectors
self.update_with_decay("batch_variance", batch_variance, self.affine_param_batch_decay)
def replace(self, batch_samples, batch_mask):
for ind, (samples, mask) in enumerate(
zip(batch_samples.unbind(dim=0), batch_mask.unbind(dim=0), strict=False)
):
if not torch.any(mask):
continue
sampled = self.sample_fn(rearrange(samples, "... -> 1 ..."), mask.sum().item())
sampled = rearrange(sampled, "1 ... -> ...")
self.embed.data[ind][mask] = sampled
self.cluster_size.data[ind][mask] = self.reset_cluster_size
self.embed_avg.data[ind][mask] = sampled * self.reset_cluster_size
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "h ... d -> h (...) d")
self.replace(batch_samples, batch_mask=expired_codes)
@autocast(enabled=False)
def forward(self, x, sample_codebook_temp=None, mask=None, freeze_codebook=False):
needs_codebook_dim = x.ndim < 4
sample_codebook_temp = (
sample_codebook_temp if (sample_codebook_temp is not None) else self.sample_codebook_temp
)
x = x.float()
if needs_codebook_dim:
x = rearrange(x, "... -> 1 ...")
flatten, ps = pack_one(x, "h * d")
if mask is not None:
mask = repeat(
mask,
"b n -> c (b h n)",
c=flatten.shape[0],
h=flatten.shape[-2] // (mask.shape[0] * mask.shape[1]),
)
self.init_embed_(flatten, mask=mask)
if self.affine_param:
self.update_affine(flatten, self.embed, mask=mask)
embed = self.embed if self.learnable_codebook else self.embed.detach()
if self.affine_param:
codebook_std = self.codebook_variance.clamp(min=1e-5).sqrt()
batch_std = self.batch_variance.clamp(min=1e-5).sqrt()
embed = (embed - self.codebook_mean) * (batch_std / codebook_std) + self.batch_mean
dist = -cdist(flatten, embed)
embed_ind, embed_onehot = self.gumbel_sample(
dist, dim=-1, temperature=sample_codebook_temp, training=self.training
)
embed_ind = unpack_one(embed_ind, ps, "h *")
if self.training:
unpacked_onehot = unpack_one(embed_onehot, ps, "h * c")
quantize = einsum("h b n c, h c d -> h b n d", unpacked_onehot, embed)
else:
quantize = batched_embedding(embed_ind, embed)
if self.training and self.ema_update and not freeze_codebook:
if self.affine_param:
flatten = (flatten - self.batch_mean) * (codebook_std / batch_std) + self.codebook_mean
if mask is not None:
embed_onehot[~mask] = 0.0
cluster_size = embed_onehot.sum(dim=1)
self.all_reduce_fn(cluster_size)
ema_inplace(self.cluster_size.data, cluster_size, self.decay)
embed_sum = einsum("h n d, h n c -> h c d", flatten, embed_onehot)
self.all_reduce_fn(embed_sum.contiguous())
ema_inplace(self.embed_avg.data, embed_sum, self.decay)
cluster_size = laplace_smoothing(
self.cluster_size, self.codebook_size, self.eps
) * self.cluster_size.sum(dim=-1, keepdim=True)
embed_normalized = self.embed_avg / rearrange(cluster_size, "... -> ... 1")
self.embed.data.copy_(embed_normalized)
self.expire_codes_(x)
if needs_codebook_dim:
quantize, embed_ind = tuple(rearrange(t, "1 ... -> ...") for t in (quantize, embed_ind))
dist = unpack_one(dist, ps, "h * d")
return quantize, embed_ind, dist
|