#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import gymnasium as gym from lerobot.common.envs.configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv def make_env_config(env_type: str, **kwargs) -> EnvConfig: if env_type == "aloha": return AlohaEnv(**kwargs) elif env_type == "pusht": return PushtEnv(**kwargs) elif env_type == "xarm": return XarmEnv(**kwargs) else: raise ValueError(f"Policy type '{env_type}' is not available.") def make_env(cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False) -> gym.vector.VectorEnv | None: """Makes a gym vector environment according to the config. Args: cfg (EnvConfig): the config of the environment to instantiate. n_envs (int, optional): The number of parallelized env to return. Defaults to 1. use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to False. Raises: ValueError: if n_envs < 1 ModuleNotFoundError: If the requested env package is not installed Returns: gym.vector.VectorEnv: The parallelized gym.env instance. """ if n_envs < 1: raise ValueError("`n_envs must be at least 1") package_name = f"gym_{cfg.type}" try: importlib.import_module(package_name) except ModuleNotFoundError as e: print(f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.type}]'`") raise e gym_handle = f"{package_name}/{cfg.task}" # batched version of the env that returns an observation of shape (b, c) env_cls = gym.vector.AsyncVectorEnv if use_async_envs else gym.vector.SyncVectorEnv env = env_cls( [lambda: gym.make(gym_handle, disable_env_checker=True, **cfg.gym_kwargs) for _ in range(n_envs)] ) return env