#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.optim import Optimizer from torch.optim.lr_scheduler import LRScheduler from lerobot.common.policies.pretrained import PreTrainedPolicy from lerobot.configs.train import TrainPipelineConfig def make_optimizer_and_scheduler( cfg: TrainPipelineConfig, policy: PreTrainedPolicy ) -> tuple[Optimizer, LRScheduler | None]: """Generates the optimizer and scheduler based on configs. Args: cfg (TrainPipelineConfig): The training config that contains optimizer and scheduler configs policy (PreTrainedPolicy): The policy config from which parameters and presets must be taken from. Returns: tuple[Optimizer, LRScheduler | None]: The couple (Optimizer, Scheduler). Scheduler can be `None`. """ params = policy.get_optim_params() if cfg.use_policy_training_preset else policy.parameters() optimizer = cfg.optimizer.build(params) lr_scheduler = cfg.scheduler.build(optimizer, cfg.steps) if cfg.scheduler is not None else None return optimizer, lr_scheduler