#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import json import logging import subprocess import warnings from collections import OrderedDict from dataclasses import dataclass, field from pathlib import Path from typing import Any, ClassVar import pyarrow as pa import torch import torchvision from datasets.features.features import register_feature from PIL import Image def get_safe_default_codec(): if importlib.util.find_spec("torchcodec"): return "torchcodec" else: logging.warning( "'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder" ) return "pyav" def decode_video_frames( video_path: Path | str, timestamps: list[float], tolerance_s: float, backend: str | None = None, ) -> torch.Tensor: """ Decodes video frames using the specified backend. Args: video_path (Path): Path to the video file. timestamps (list[float]): List of timestamps to extract frames. tolerance_s (float): Allowed deviation in seconds for frame retrieval. backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav".. Returns: torch.Tensor: Decoded frames. Currently supports torchcodec on cpu and pyav. """ if backend is None: backend = get_safe_default_codec() if backend == "torchcodec": return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s) elif backend in ["pyav", "video_reader"]: return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend) else: raise ValueError(f"Unsupported video backend: {backend}") def decode_video_frames_torchvision( video_path: Path | str, timestamps: list[float], tolerance_s: float, backend: str = "pyav", log_loaded_timestamps: bool = False, ) -> torch.Tensor: """Loads frames associated to the requested timestamps of a video The backend can be either "pyav" (default) or "video_reader". "video_reader" requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst (note that you need to compile against ffmpeg<4.3) While both use cpu, "video_reader" is supposedly faster than "pyav" but requires additional setup. For more info on video decoding, see `benchmark/video/README.md` See torchvision doc for more info on these two backends: https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend Note: Video benefits from inter-frame compression. Instead of storing every frame individually, the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame, and all subsequent frames until reaching the requested frame. The number of key frames in a video can be adjusted during encoding to take into account decoding time and video size in bytes. """ video_path = str(video_path) # set backend keyframes_only = False torchvision.set_video_backend(backend) if backend == "pyav": keyframes_only = True # pyav doesnt support accuracte seek # set a video stream reader # TODO(rcadene): also load audio stream at the same time reader = torchvision.io.VideoReader(video_path, "video") # set the first and last requested timestamps # Note: previous timestamps are usually loaded, since we need to access the previous key frame first_ts = min(timestamps) last_ts = max(timestamps) # access closest key frame of the first requested frame # Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video) # for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek reader.seek(first_ts, keyframes_only=keyframes_only) # load all frames until last requested frame loaded_frames = [] loaded_ts = [] for frame in reader: current_ts = frame["pts"] if log_loaded_timestamps: logging.info(f"frame loaded at timestamp={current_ts:.4f}") loaded_frames.append(frame["data"]) loaded_ts.append(current_ts) if current_ts >= last_ts: break if backend == "pyav": reader.container.close() reader = None query_ts = torch.tensor(timestamps) loaded_ts = torch.tensor(loaded_ts) # compute distances between each query timestamp and timestamps of all loaded frames dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1) min_, argmin_ = dist.min(1) is_within_tol = min_ < tolerance_s assert is_within_tol.all(), ( f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})." "It means that the closest frame that can be loaded from the video is too far away in time." "This might be due to synchronization issues with timestamps during data collection." "To be safe, we advise to ignore this item during training." f"\nqueried timestamps: {query_ts}" f"\nloaded timestamps: {loaded_ts}" f"\nvideo: {video_path}" f"\nbackend: {backend}" ) # get closest frames to the query timestamps closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_]) closest_ts = loaded_ts[argmin_] if log_loaded_timestamps: logging.info(f"{closest_ts=}") # convert to the pytorch format which is float32 in [0,1] range (and channel first) closest_frames = closest_frames.type(torch.float32) / 255 assert len(timestamps) == len(closest_frames) return closest_frames def decode_video_frames_torchcodec( video_path: Path | str, timestamps: list[float], tolerance_s: float, device: str = "cpu", log_loaded_timestamps: bool = False, ) -> torch.Tensor: """Loads frames associated with the requested timestamps of a video using torchcodec. Note: Setting device="cuda" outside the main process, e.g. in data loader workers, will lead to CUDA initialization errors. Note: Video benefits from inter-frame compression. Instead of storing every frame individually, the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame, and all subsequent frames until reaching the requested frame. The number of key frames in a video can be adjusted during encoding to take into account decoding time and video size in bytes. """ if importlib.util.find_spec("torchcodec"): from torchcodec.decoders import VideoDecoder else: raise ImportError("torchcodec is required but not available.") # initialize video decoder decoder = VideoDecoder(video_path, device=device, seek_mode="approximate") loaded_frames = [] loaded_ts = [] # get metadata for frame information metadata = decoder.metadata average_fps = metadata.average_fps # convert timestamps to frame indices frame_indices = [round(ts * average_fps) for ts in timestamps] # retrieve frames based on indices frames_batch = decoder.get_frames_at(indices=frame_indices) for frame, pts in zip(frames_batch.data, frames_batch.pts_seconds, strict=False): loaded_frames.append(frame) loaded_ts.append(pts.item()) if log_loaded_timestamps: logging.info(f"Frame loaded at timestamp={pts:.4f}") query_ts = torch.tensor(timestamps) loaded_ts = torch.tensor(loaded_ts) # compute distances between each query timestamp and loaded timestamps dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1) min_, argmin_ = dist.min(1) is_within_tol = min_ < tolerance_s assert is_within_tol.all(), ( f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})." "It means that the closest frame that can be loaded from the video is too far away in time." "This might be due to synchronization issues with timestamps during data collection." "To be safe, we advise to ignore this item during training." f"\nqueried timestamps: {query_ts}" f"\nloaded timestamps: {loaded_ts}" f"\nvideo: {video_path}" ) # get closest frames to the query timestamps closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_]) closest_ts = loaded_ts[argmin_] if log_loaded_timestamps: logging.info(f"{closest_ts=}") # convert to float32 in [0,1] range (channel first) closest_frames = closest_frames.type(torch.float32) / 255 assert len(timestamps) == len(closest_frames) return closest_frames def encode_video_frames( imgs_dir: Path | str, video_path: Path | str, fps: int, vcodec: str = "libsvtav1", pix_fmt: str = "yuv420p", g: int | None = 2, crf: int | None = 30, fast_decode: int = 0, log_level: str | None = "error", overwrite: bool = False, ) -> None: """More info on ffmpeg arguments tuning on `benchmark/video/README.md`""" video_path = Path(video_path) imgs_dir = Path(imgs_dir) video_path.parent.mkdir(parents=True, exist_ok=True) ffmpeg_args = OrderedDict( [ ("-f", "image2"), ("-r", str(fps)), ("-i", str(imgs_dir / "frame_%06d.png")), ("-vcodec", vcodec), ("-pix_fmt", pix_fmt), ] ) if g is not None: ffmpeg_args["-g"] = str(g) if crf is not None: ffmpeg_args["-crf"] = str(crf) if fast_decode: key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune" value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode" ffmpeg_args[key] = value if log_level is not None: ffmpeg_args["-loglevel"] = str(log_level) ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair] if overwrite: ffmpeg_args.append("-y") ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)] # redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL) if not video_path.exists(): raise OSError( f"Video encoding did not work. File not found: {video_path}. " f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`" ) @dataclass class VideoFrame: # TODO(rcadene, lhoestq): move to Hugging Face `datasets` repo """ Provides a type for a dataset containing video frames. Example: ```python data_dict = [{"image": {"path": "videos/episode_0.mp4", "timestamp": 0.3}}] features = {"image": VideoFrame()} Dataset.from_dict(data_dict, features=Features(features)) ``` """ pa_type: ClassVar[Any] = pa.struct({"path": pa.string(), "timestamp": pa.float32()}) _type: str = field(default="VideoFrame", init=False, repr=False) def __call__(self): return self.pa_type with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "'register_feature' is experimental and might be subject to breaking changes in the future.", category=UserWarning, ) # to make VideoFrame available in HuggingFace `datasets` register_feature(VideoFrame, "VideoFrame") def get_audio_info(video_path: Path | str) -> dict: ffprobe_audio_cmd = [ "ffprobe", "-v", "error", "-select_streams", "a:0", "-show_entries", "stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration", "-of", "json", str(video_path), ] result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if result.returncode != 0: raise RuntimeError(f"Error running ffprobe: {result.stderr}") info = json.loads(result.stdout) audio_stream_info = info["streams"][0] if info.get("streams") else None if audio_stream_info is None: return {"has_audio": False} # Return the information, defaulting to None if no audio stream is present return { "has_audio": True, "audio.channels": audio_stream_info.get("channels", None), "audio.codec": audio_stream_info.get("codec_name", None), "audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None, "audio.sample_rate": int(audio_stream_info["sample_rate"]) if audio_stream_info.get("sample_rate") else None, "audio.bit_depth": audio_stream_info.get("bit_depth", None), "audio.channel_layout": audio_stream_info.get("channel_layout", None), } def get_video_info(video_path: Path | str) -> dict: ffprobe_video_cmd = [ "ffprobe", "-v", "error", "-select_streams", "v:0", "-show_entries", "stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt", "-of", "json", str(video_path), ] result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if result.returncode != 0: raise RuntimeError(f"Error running ffprobe: {result.stderr}") info = json.loads(result.stdout) video_stream_info = info["streams"][0] # Calculate fps from r_frame_rate r_frame_rate = video_stream_info["r_frame_rate"] num, denom = map(int, r_frame_rate.split("/")) fps = num / denom pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"]) video_info = { "video.fps": fps, "video.height": video_stream_info["height"], "video.width": video_stream_info["width"], "video.channels": pixel_channels, "video.codec": video_stream_info["codec_name"], "video.pix_fmt": video_stream_info["pix_fmt"], "video.is_depth_map": False, **get_audio_info(video_path), } return video_info def get_video_pixel_channels(pix_fmt: str) -> int: if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt: return 1 elif "rgba" in pix_fmt or "yuva" in pix_fmt: return 4 elif "rgb" in pix_fmt or "yuv" in pix_fmt: return 3 else: raise ValueError("Unknown format") def get_image_pixel_channels(image: Image): if image.mode == "L": return 1 # Grayscale elif image.mode == "LA": return 2 # Grayscale + Alpha elif image.mode == "RGB": return 3 # RGB elif image.mode == "RGBA": return 4 # RGBA else: raise ValueError("Unknown format")