Spaces:
Running
Running
File size: 10,589 Bytes
c0f4df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import json
from pathlib import Path
# Set style
plt.style.use('ggplot')
sns.set_palette("Set2")
plt.rcParams['figure.figsize'] = (12, 8)
# Load the data
results_csv = "results/summary_20250421_230054.csv"
results_json = "results/results_20250421_230054.json"
df = pd.read_csv(results_csv)
# Extract category from description if not already available
def extract_category(row):
"""
Determines the category of an image based on its description or existing category.
Args:
row: A pandas DataFrame row containing 'category' and 'description' fields
Returns:
str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown')
"""
if pd.notna(row['category']) and row['category'] != 'unknown':
return row['category']
# Try to extract from description
desc = row['description'].lower()
if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']):
return 'fashion'
elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']):
return 'landscape'
elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']):
return 'abstract'
else:
return 'unknown'
# Clean the data
df['category'] = df.apply(extract_category, axis=1)
df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce')
# 1. Model Performance Comparison
def plot_model_comparison():
"""
Creates boxplots comparing model performance across three metrics:
VQA score, aesthetic score, and fidelity score.
Saves the resulting plot to 'results/model_comparison.png'.
"""
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
sns.boxplot(x='model', y=metric, data=df, ax=axes[i])
axes[i].set_title(f'{title} by Model')
axes[i].set_ylim([0, 1])
plt.tight_layout()
plt.savefig('results/model_comparison.png')
plt.close()
# 2. Category Performance Analysis
def plot_category_performance():
"""
Creates boxplots showing performance by category and model for three metrics:
VQA score, aesthetic score, and fidelity score.
Saves the resulting plot to 'results/category_performance.png'.
"""
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i])
axes[i].set_title(f'{title} by Category and Model')
axes[i].set_ylim([0, 1])
if i > 0:
axes[i].get_legend().remove()
axes[0].legend(title='Model')
plt.tight_layout()
plt.savefig('results/category_performance.png')
plt.close()
# 3. Generation Time Analysis
def plot_generation_time():
"""
Creates visualizations of generation time analysis:
1. A boxplot showing generation time by model
2. Scatter plots showing the relationship between generation time and quality metrics
Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'.
"""
plt.figure(figsize=(10, 6))
sns.boxplot(x='model', y='generation_time', data=df)
plt.title('Generation Time by Model')
plt.ylabel('Time (seconds)')
plt.tight_layout()
plt.savefig('results/generation_time.png')
plt.close()
# Generation time vs quality scatter plot
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
model_data = df[df['model'] == model]
axes[i].scatter(model_data['generation_time'], model_data[metric],
alpha=0.6, label=model, c=color)
axes[i].set_title(f'{title} vs. Generation Time')
axes[i].set_xlabel('Generation Time (seconds)')
axes[i].set_ylabel(title)
axes[i].legend()
plt.tight_layout()
plt.savefig('results/quality_vs_time.png')
plt.close()
# 4. Description complexity vs performance
def plot_complexity_performance():
"""
Analyzes the relationship between description complexity (word count) and
performance metrics, creating scatter plots with trend lines.
Saves the resulting plot to 'results/complexity_performance.png'.
"""
df['description_length'] = df['description'].str.len()
df['word_count'] = df['description'].str.split().str.len()
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
for i, (metric, title) in enumerate(zip(metrics, titles)):
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
model_data = df[df['model'] == model]
axes[i].scatter(model_data['word_count'], model_data[metric],
alpha=0.6, label=model, c=color)
# Add trendline
z = np.polyfit(model_data['word_count'], model_data[metric], 1)
p = np.poly1d(z)
axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])),
c=color, linestyle='--')
axes[i].set_title(f'{title} vs. Description Complexity')
axes[i].set_xlabel('Word Count')
axes[i].set_ylabel(title)
axes[i].legend()
plt.tight_layout()
plt.savefig('results/complexity_performance.png')
plt.close()
# 5. Success and failure examples
def analyze_best_worst_examples():
"""
Identifies and prints the top 10 most successful and least successful generations
based on fidelity score.
Creates directories for sample SVG and PNG files if they don't exist.
Returns:
tuple: (success_df, failure_df) DataFrames containing the best and worst examples
"""
# Create directory for result samples
Path("results/sample_svg").mkdir(exist_ok=True)
Path("results/sample_png").mkdir(exist_ok=True)
# Load detailed results
with open(results_json, 'r') as f:
results_data = json.load(f)
# Create success/failure dataframes
success_df = df.nlargest(10, 'fidelity_score')
failure_df = df.nsmallest(10, 'fidelity_score')
# Print success examples
print("Top 10 Successful Generations:")
print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
# Print failure examples
print("\nTop 10 Failed Generations:")
print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
return success_df, failure_df
# 6. Summary statistics
def print_summary_stats():
"""
Calculates and prints summary statistics for model performance:
1. Overall stats by model (mean, std, min, max for each metric)
2. Performance by category and model
Also creates a radar chart visualizing fidelity scores by category and model,
saved to 'results/category_radar.png'.
"""
# Overall stats by model
model_stats = df.groupby('model').agg({
'vqa_score': ['mean', 'std', 'min', 'max'],
'aesthetic_score': ['mean', 'std', 'min', 'max'],
'fidelity_score': ['mean', 'std', 'min', 'max'],
'generation_time': ['mean', 'std', 'min', 'max']
})
print("Overall Model Performance:")
print(model_stats)
# Stats by category and model
category_stats = df.groupby(['model', 'category']).agg({
'vqa_score': 'mean',
'aesthetic_score': 'mean',
'fidelity_score': 'mean',
'generation_time': 'mean'
}).reset_index()
print("\nPerformance by Category and Model:")
print(category_stats.to_string())
# Create a radar chart for category performance
categories = category_stats['category'].unique()
models = category_stats['model'].unique()
plt.figure(figsize=(10, 8))
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1] # Close the loop
ax = plt.subplot(111, polar=True)
for model in models:
model_data = category_stats[category_stats['model'] == model]
values = []
for category in categories:
cat_data = model_data[model_data['category'] == category]
if not cat_data.empty:
values.append(cat_data['fidelity_score'].values[0])
else:
values.append(0)
values += values[:1] # Close the loop
ax.plot(angles, values, linewidth=2, label=model)
ax.fill(angles, values, alpha=0.25)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories)
ax.set_title('Fidelity Score by Category and Model')
ax.legend(loc='upper right')
plt.tight_layout()
plt.savefig('results/category_radar.png')
plt.close()
# Main analysis function
def run_analysis():
"""
Main function that runs the complete analysis pipeline:
1. Creates necessary directories
2. Generates all visualization plots
3. Prints summary statistics
4. Analyzes best and worst examples
All results are saved to the 'results/' directory.
"""
print("Starting analysis of evaluation results...")
# Create plots directory if it doesn't exist
Path("results").mkdir(exist_ok=True)
# Generate all plots
plot_model_comparison()
plot_category_performance()
plot_generation_time()
plot_complexity_performance()
# Print summary statistics
print_summary_stats()
# Analyze best and worst examples
success_df, failure_df = analyze_best_worst_examples()
print("\nAnalysis complete. Visualizations saved to 'results/' directory.")
if __name__ == "__main__":
run_analysis() |