fradinho commited on
Commit
b1af951
·
1 Parent(s): d28d900

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -135
app.py CHANGED
@@ -343,141 +343,6 @@ def decoder(inputs, input_tensor):
343
 
344
 
345
 
346
-
347
- def autoencoder(n_classes=2, height=size, width=size, channels=3):
348
- inputs = Input((height, width, channels))
349
- #Contraction path
350
- conv_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
351
- conv_1 = BatchNormalization()(conv_1)
352
- conv_1 = Dropout(0.2)(conv_1)
353
- conv_1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv_1)
354
- conv_1 = BatchNormalization()(conv_1)
355
- pool_1 = MaxPooling2D((2, 2))(conv_1)
356
-
357
- conv_2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool_1)
358
- conv_2 = BatchNormalization()(conv_2)
359
- conv_2 = Dropout(0.2)(conv_2)
360
- conv_2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_2)
361
- conv_2 = BatchNormalization()(conv_2)
362
- pool_2 = MaxPooling2D((2, 2))(conv_2)
363
-
364
- conv_3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool_2)
365
- conv_3 = BatchNormalization()(conv_3)
366
- conv_3 = Dropout(0.2)(conv_3)
367
- conv_3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_3)
368
- conv_3 = BatchNormalization()(conv_3)
369
- pool_3 = MaxPooling2D((2, 2))(conv_3)
370
-
371
- conv_4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool_3)
372
- conv_4 = BatchNormalization()(conv_4)
373
- conv_4 = Dropout(0.2)(conv_4)
374
- conv_4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_4)
375
- conv_4 = BatchNormalization()(conv_4)
376
- pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
377
-
378
-
379
- #conv_5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool_4)
380
- #conv_5 = BatchNormalization()(conv_5)
381
- conv_5 = Dropout(0.1)(pool_4)
382
-
383
- #Expansive path
384
-
385
- u6 = UpSampling2D((2, 2))(conv_5)
386
- #u6 = concatenate([att_5, u6])
387
- conv_6 = Conv2D(256, (3, 3), activation='relu', padding='same')(u6)
388
- conv_6 = BatchNormalization()(conv_6)
389
- conv_6 = Dropout(0.2)(conv_6)
390
- #conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv_6)
391
- #conv_6 = Dropout(0.2)(conv_6)
392
- #conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv_6)
393
- #conv_6 = BatchNormalization()(conv_6)
394
- #conv_6 = Dropout(0.2)(conv_6)
395
- conv_6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_6)
396
- conv_6 = BatchNormalization()(conv_6)
397
-
398
- """
399
- u66 = UpSampling2D((2, 2))(conv_6)
400
- conv_66 = Conv2D(128, (3, 3), activation='relu', padding='same')(u66)
401
- conv_66 = BatchNormalization()(conv_66)
402
- conv_66 = Conv2D(128, (3, 3), activation='relu', padding='same')(u66)
403
- conv_66 = Conv2D(128, (3, 3), activation='relu', padding='same')(u66)
404
- conv_66 = BatchNormalization()(conv_66)
405
- conv_66 = Dropout(0.2)(conv_66)
406
- conv_66 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_66)
407
- """
408
-
409
- u7 = UpSampling2D((2, 2))(conv_6)
410
- conv_7 = Conv2D(128, (3, 3), activation='relu', padding='same')(u7)
411
- conv_7 = BatchNormalization()(conv_7)
412
- conv_7 = Dropout(0.2)(conv_7)
413
- #conv_7 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_7)
414
- #conv_7 = Dropout(0.1)(conv_7)
415
- #conv_7 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_7)
416
- #conv_7 = BatchNormalization()(conv_7)
417
- #conv_7 = Dropout(0.1)(conv_7)
418
- conv_7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_7)
419
- conv_7 = BatchNormalization()(conv_7)
420
-
421
- u8 = UpSampling2D((2, 2))(conv_7)
422
- conv_8 = Conv2D(64, (3, 3), activation='relu', padding='same')(u8)
423
- conv_8 = BatchNormalization()(conv_8)
424
- conv_8 = Dropout(0.2)(conv_8)
425
- #conv_8 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_8)
426
- #conv_8 = Dropout(0.2)(conv_8)
427
- #conv_8 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_8)
428
- #conv_8 = BatchNormalization()(conv_8)
429
- #conv_8 = Dropout(0.2)(conv_8)
430
- conv_8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_8)
431
- conv_8 = BatchNormalization()(conv_8)
432
-
433
- u9 = UpSampling2D((2, 2))(conv_8)
434
- conv_9 = Conv2D(32, (3, 3), activation='relu', padding='same')(u9)
435
- conv_9 = BatchNormalization()(conv_9)
436
- conv_9 = Dropout(0.2)(conv_9)
437
- #conv_9 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_9)
438
- #conv_9 = Dropout(0.1)(conv_9)
439
- #conv_9 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_9)
440
- #conv_9 = BatchNormalization()(conv_9)
441
- #conv_9 = Dropout(0.1)(conv_9)
442
- conv_9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv_9)
443
- conv_9 = BatchNormalization()(conv_9)
444
-
445
- outputs = Conv2D(n_classes, (1, 1), activation='softmax')(conv_9)
446
-
447
- model = Model(inputs=[inputs], outputs=[outputs])
448
- return model
449
-
450
- """
451
- gating_16 = gating_signal(stage_5, 8*FILTER_NUM, True)
452
- att_16 = attention_block(stage_4, stage_5, 8*FILTER_NUM)
453
- up_stage_1 = upsample(stage_5,stage_4)
454
- up_16 = layers.concatenate([up_stage_1, att_16], axis=axis)
455
-
456
-
457
- gating_32 = gating_signal(up_repeat_elem1, 4*FILTER_NUM, True)
458
- att_32 = attention_block(stage_3, gating_32, 4*FILTER_NUM)
459
- up_stage_2 = upsample(up_repeat_elem1,stage_3)
460
- up_32 = layers.concatenate([up_stage_2, att_32], axis=axis)
461
-
462
-
463
- gating_64 = gating_signal(up_repeat_elem2, 2*FILTER_NUM, True)
464
- att_64 = attention_block(stage_2, gating_64, 2*FILTER_NUM)
465
- up_stage_3 = upsample(up_repeat_elem2,stage_2)
466
- up_64 = layers.concatenate([up_stage_3, att_64], axis=axis)
467
-
468
-
469
- gating_128 = gating_signal(up_repeat_elem3, FILTER_NUM, True)
470
- att_128 = attention_block(stage_1, gating_128, FILTER_NUM)
471
- up_stage_4 = upsample(up_repeat_elem3,stage_1)
472
- up_128 = layers.concatenate([up_stage_4, att_128], axis=axis)
473
-
474
-
475
- gating_256 = gating_signal(up_repeat_elem4, FILTER_NUM, True)
476
- att_256 = attention_block(conv_1, gating_256, FILTER_NUM)
477
- up_stage_5 = upsample(up_repeat_elem4,conv_1)
478
- up_256 = layers.concatenate([up_stage_5, att_256], axis=axis)
479
- """
480
-
481
  def unet_2( n_classes=2, height=size, width=size, channels=3, metrics = ['accuracy']):
482
  inputs = Input((height, width, channels))
483
 
 
343
 
344
 
345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
  def unet_2( n_classes=2, height=size, width=size, channels=3, metrics = ['accuracy']):
347
  inputs = Input((height, width, channels))
348