DemoGPT / modules /index_func.py
JohnSmith9982's picture
Upload 85 files
b28a1a9
raw
history blame
5.51 kB
import os
import logging
import colorama
import PyPDF2
from tqdm import tqdm
from modules.presets import *
from modules.utils import *
from modules.config import local_embedding
def get_index_name(file_src):
file_paths = [x.name for x in file_src]
file_paths.sort(key=lambda x: os.path.basename(x))
md5_hash = hashlib.md5()
for file_path in file_paths:
with open(file_path, "rb", encoding="utf-8") as f:
while chunk := f.read(8192):
md5_hash.update(chunk)
return md5_hash.hexdigest()
def get_documents(file_src):
from langchain.schema import Document
from langchain.text_splitter import TokenTextSplitter
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
documents = []
logging.debug("Loading documents...")
logging.debug(f"file_src: {file_src}")
for file in file_src:
filepath = file.name
filename = os.path.basename(filepath)
file_type = os.path.splitext(filename)[1]
logging.info(f"loading file: {filename}")
try:
if file_type == ".pdf":
logging.debug("Loading PDF...")
try:
from modules.pdf_func import parse_pdf
from modules.config import advance_docs
two_column = advance_docs["pdf"].get("two_column", False)
pdftext = parse_pdf(filepath, two_column).text
except:
pdftext = ""
with open(filepath, "rb", encoding="utf-8") as pdfFileObj:
pdfReader = PyPDF2.PdfReader(pdfFileObj)
for page in tqdm(pdfReader.pages):
pdftext += page.extract_text()
texts = [Document(page_content=pdftext, metadata={"source": filepath})]
elif file_type == ".docx":
logging.debug("Loading Word...")
from langchain.document_loaders import UnstructuredWordDocumentLoader
loader = UnstructuredWordDocumentLoader(filepath)
texts = loader.load()
elif file_type == ".pptx":
logging.debug("Loading PowerPoint...")
from langchain.document_loaders import UnstructuredPowerPointLoader
loader = UnstructuredPowerPointLoader(filepath)
texts = loader.load()
elif file_type == ".epub":
logging.debug("Loading EPUB...")
from langchain.document_loaders import UnstructuredEPubLoader
loader = UnstructuredEPubLoader(filepath)
texts = loader.load()
elif file_type == ".xlsx":
logging.debug("Loading Excel...")
text_list = excel_to_string(filepath)
texts = []
for elem in text_list:
texts.append(Document(page_content=elem, metadata={"source": filepath}))
else:
logging.debug("Loading text file...")
from langchain.document_loaders import TextLoader
loader = TextLoader(filepath, "utf8")
texts = loader.load()
except Exception as e:
import traceback
logging.error(f"Error loading file: {filename}")
traceback.print_exc()
texts = text_splitter.split_documents(texts)
documents.extend(texts)
logging.debug("Documents loaded.")
return documents
def construct_index(
api_key,
file_src,
max_input_size=4096,
num_outputs=5,
max_chunk_overlap=20,
chunk_size_limit=600,
embedding_limit=None,
separator=" ",
):
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import FAISS
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
else:
# 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx"
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
embedding_limit = None if embedding_limit == 0 else embedding_limit
separator = " " if separator == "" else separator
index_name = get_index_name(file_src)
index_path = f"./index/{index_name}"
if local_embedding:
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2")
else:
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get("OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key))
if os.path.exists(index_path):
logging.info("找到了缓存的索引文件,加载中……")
return FAISS.load_local(index_path, embeddings)
else:
try:
documents = get_documents(file_src)
logging.info("构建索引中……")
with retrieve_proxy():
index = FAISS.from_documents(documents, embeddings)
logging.debug("索引构建完成!")
os.makedirs("./index", exist_ok=True)
index.save_local(index_path)
logging.debug("索引已保存至本地!")
return index
except Exception as e:
import traceback
logging.error("索引构建失败!%s", e)
traceback.print_exc()
return None