Commit
·
206f319
1
Parent(s):
8ba98ee
Delete modules/chat_func.py
Browse files- modules/chat_func.py +0 -497
modules/chat_func.py
DELETED
@@ -1,497 +0,0 @@
|
|
1 |
-
# -*- coding:utf-8 -*-
|
2 |
-
from __future__ import annotations
|
3 |
-
from typing import TYPE_CHECKING, List
|
4 |
-
|
5 |
-
import logging
|
6 |
-
import json
|
7 |
-
import os
|
8 |
-
import requests
|
9 |
-
import urllib3
|
10 |
-
|
11 |
-
from tqdm import tqdm
|
12 |
-
import colorama
|
13 |
-
from duckduckgo_search import ddg
|
14 |
-
import asyncio
|
15 |
-
import aiohttp
|
16 |
-
|
17 |
-
|
18 |
-
from modules.presets import *
|
19 |
-
from modules.llama_func import *
|
20 |
-
from modules.utils import *
|
21 |
-
from . import shared
|
22 |
-
from modules.config import retrieve_proxy
|
23 |
-
|
24 |
-
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
|
25 |
-
|
26 |
-
if TYPE_CHECKING:
|
27 |
-
from typing import TypedDict
|
28 |
-
|
29 |
-
class DataframeData(TypedDict):
|
30 |
-
headers: List[str]
|
31 |
-
data: List[List[str | int | bool]]
|
32 |
-
|
33 |
-
|
34 |
-
initial_prompt = "You are a helpful assistant."
|
35 |
-
HISTORY_DIR = "history"
|
36 |
-
TEMPLATES_DIR = "templates"
|
37 |
-
|
38 |
-
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
|
39 |
-
def get_response(
|
40 |
-
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
|
41 |
-
):
|
42 |
-
headers = {
|
43 |
-
"Content-Type": "application/json",
|
44 |
-
"Authorization": f"Bearer {openai_api_key}",
|
45 |
-
}
|
46 |
-
|
47 |
-
history = [construct_system(system_prompt), *history]
|
48 |
-
|
49 |
-
payload = {
|
50 |
-
"model": selected_model,
|
51 |
-
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
|
52 |
-
"temperature": temperature, # 1.0,
|
53 |
-
"top_p": top_p, # 1.0,
|
54 |
-
"n": 1,
|
55 |
-
"stream": stream,
|
56 |
-
"presence_penalty": 0,
|
57 |
-
"frequency_penalty": 0,
|
58 |
-
}
|
59 |
-
if stream:
|
60 |
-
timeout = timeout_streaming
|
61 |
-
else:
|
62 |
-
timeout = timeout_all
|
63 |
-
|
64 |
-
|
65 |
-
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
66 |
-
if shared.state.completion_url != COMPLETION_URL:
|
67 |
-
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
|
68 |
-
|
69 |
-
with retrieve_proxy():
|
70 |
-
response = requests.post(
|
71 |
-
shared.state.completion_url,
|
72 |
-
headers=headers,
|
73 |
-
json=payload,
|
74 |
-
stream=True,
|
75 |
-
timeout=timeout,
|
76 |
-
)
|
77 |
-
|
78 |
-
return response
|
79 |
-
|
80 |
-
|
81 |
-
def stream_predict(
|
82 |
-
openai_api_key,
|
83 |
-
system_prompt,
|
84 |
-
history,
|
85 |
-
inputs,
|
86 |
-
chatbot,
|
87 |
-
all_token_counts,
|
88 |
-
top_p,
|
89 |
-
temperature,
|
90 |
-
selected_model,
|
91 |
-
fake_input=None,
|
92 |
-
display_append=""
|
93 |
-
):
|
94 |
-
def get_return_value():
|
95 |
-
return chatbot, history, status_text, all_token_counts
|
96 |
-
|
97 |
-
logging.info("实时回答模式")
|
98 |
-
partial_words = ""
|
99 |
-
counter = 0
|
100 |
-
status_text = "开始实时传输回答……"
|
101 |
-
history.append(construct_user(inputs))
|
102 |
-
history.append(construct_assistant(""))
|
103 |
-
if fake_input:
|
104 |
-
chatbot.append((fake_input, ""))
|
105 |
-
else:
|
106 |
-
chatbot.append((inputs, ""))
|
107 |
-
user_token_count = 0
|
108 |
-
if fake_input is not None:
|
109 |
-
input_token_count = count_token(construct_user(fake_input))
|
110 |
-
else:
|
111 |
-
input_token_count = count_token(construct_user(inputs))
|
112 |
-
if len(all_token_counts) == 0:
|
113 |
-
system_prompt_token_count = count_token(construct_system(system_prompt))
|
114 |
-
user_token_count = (
|
115 |
-
input_token_count + system_prompt_token_count
|
116 |
-
)
|
117 |
-
else:
|
118 |
-
user_token_count = input_token_count
|
119 |
-
all_token_counts.append(user_token_count)
|
120 |
-
logging.info(f"输入token计数: {user_token_count}")
|
121 |
-
yield get_return_value()
|
122 |
-
try:
|
123 |
-
response = get_response(
|
124 |
-
openai_api_key,
|
125 |
-
system_prompt,
|
126 |
-
history,
|
127 |
-
temperature,
|
128 |
-
top_p,
|
129 |
-
True,
|
130 |
-
selected_model,
|
131 |
-
)
|
132 |
-
except requests.exceptions.ConnectTimeout:
|
133 |
-
status_text = (
|
134 |
-
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
135 |
-
)
|
136 |
-
yield get_return_value()
|
137 |
-
return
|
138 |
-
except requests.exceptions.ReadTimeout:
|
139 |
-
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
|
140 |
-
yield get_return_value()
|
141 |
-
return
|
142 |
-
|
143 |
-
yield get_return_value()
|
144 |
-
error_json_str = ""
|
145 |
-
|
146 |
-
if fake_input is not None:
|
147 |
-
history[-2] = construct_user(fake_input)
|
148 |
-
for chunk in tqdm(response.iter_lines()):
|
149 |
-
if counter == 0:
|
150 |
-
counter += 1
|
151 |
-
continue
|
152 |
-
counter += 1
|
153 |
-
# check whether each line is non-empty
|
154 |
-
if chunk:
|
155 |
-
chunk = chunk.decode()
|
156 |
-
chunklength = len(chunk)
|
157 |
-
try:
|
158 |
-
chunk = json.loads(chunk[6:])
|
159 |
-
except json.JSONDecodeError:
|
160 |
-
logging.info(chunk)
|
161 |
-
error_json_str += chunk
|
162 |
-
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
|
163 |
-
yield get_return_value()
|
164 |
-
continue
|
165 |
-
# decode each line as response data is in bytes
|
166 |
-
if chunklength > 6 and "delta" in chunk["choices"][0]:
|
167 |
-
finish_reason = chunk["choices"][0]["finish_reason"]
|
168 |
-
status_text = construct_token_message(all_token_counts)
|
169 |
-
if finish_reason == "stop":
|
170 |
-
yield get_return_value()
|
171 |
-
break
|
172 |
-
try:
|
173 |
-
partial_words = (
|
174 |
-
partial_words + chunk["choices"][0]["delta"]["content"]
|
175 |
-
)
|
176 |
-
except KeyError:
|
177 |
-
status_text = (
|
178 |
-
standard_error_msg
|
179 |
-
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
|
180 |
-
+ str(sum(all_token_counts))
|
181 |
-
)
|
182 |
-
yield get_return_value()
|
183 |
-
break
|
184 |
-
history[-1] = construct_assistant(partial_words)
|
185 |
-
chatbot[-1] = (chatbot[-1][0], partial_words+display_append)
|
186 |
-
all_token_counts[-1] += 1
|
187 |
-
yield get_return_value()
|
188 |
-
|
189 |
-
|
190 |
-
def predict_all(
|
191 |
-
openai_api_key,
|
192 |
-
system_prompt,
|
193 |
-
history,
|
194 |
-
inputs,
|
195 |
-
chatbot,
|
196 |
-
all_token_counts,
|
197 |
-
top_p,
|
198 |
-
temperature,
|
199 |
-
selected_model,
|
200 |
-
fake_input=None,
|
201 |
-
display_append=""
|
202 |
-
):
|
203 |
-
logging.info("一次性回答模式")
|
204 |
-
history.append(construct_user(inputs))
|
205 |
-
history.append(construct_assistant(""))
|
206 |
-
if fake_input:
|
207 |
-
chatbot.append((fake_input, ""))
|
208 |
-
else:
|
209 |
-
chatbot.append((inputs, ""))
|
210 |
-
if fake_input is not None:
|
211 |
-
all_token_counts.append(count_token(construct_user(fake_input)))
|
212 |
-
else:
|
213 |
-
all_token_counts.append(count_token(construct_user(inputs)))
|
214 |
-
try:
|
215 |
-
response = get_response(
|
216 |
-
openai_api_key,
|
217 |
-
system_prompt,
|
218 |
-
history,
|
219 |
-
temperature,
|
220 |
-
top_p,
|
221 |
-
False,
|
222 |
-
selected_model,
|
223 |
-
)
|
224 |
-
except requests.exceptions.ConnectTimeout:
|
225 |
-
status_text = (
|
226 |
-
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
|
227 |
-
)
|
228 |
-
return chatbot, history, status_text, all_token_counts
|
229 |
-
except requests.exceptions.ProxyError:
|
230 |
-
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
|
231 |
-
return chatbot, history, status_text, all_token_counts
|
232 |
-
except requests.exceptions.SSLError:
|
233 |
-
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
|
234 |
-
return chatbot, history, status_text, all_token_counts
|
235 |
-
response = json.loads(response.text)
|
236 |
-
if fake_input is not None:
|
237 |
-
history[-2] = construct_user(fake_input)
|
238 |
-
try:
|
239 |
-
content = response["choices"][0]["message"]["content"]
|
240 |
-
history[-1] = construct_assistant(content)
|
241 |
-
chatbot[-1] = (chatbot[-1][0], content+display_append)
|
242 |
-
total_token_count = response["usage"]["total_tokens"]
|
243 |
-
if fake_input is not None:
|
244 |
-
all_token_counts[-1] += count_token(construct_assistant(content))
|
245 |
-
else:
|
246 |
-
all_token_counts[-1] = total_token_count - sum(all_token_counts)
|
247 |
-
status_text = construct_token_message(total_token_count)
|
248 |
-
return chatbot, history, status_text, all_token_counts
|
249 |
-
except KeyError:
|
250 |
-
status_text = standard_error_msg + str(response)
|
251 |
-
return chatbot, history, status_text, all_token_counts
|
252 |
-
|
253 |
-
|
254 |
-
def predict(
|
255 |
-
openai_api_key,
|
256 |
-
system_prompt,
|
257 |
-
history,
|
258 |
-
inputs,
|
259 |
-
chatbot,
|
260 |
-
all_token_counts,
|
261 |
-
top_p,
|
262 |
-
temperature,
|
263 |
-
stream=False,
|
264 |
-
selected_model=MODELS[0],
|
265 |
-
use_websearch=False,
|
266 |
-
files = None,
|
267 |
-
reply_language="中文",
|
268 |
-
should_check_token_count=True,
|
269 |
-
): # repetition_penalty, top_k
|
270 |
-
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
|
271 |
-
from llama_index.indices.query.schema import QueryBundle
|
272 |
-
from langchain.llms import OpenAIChat
|
273 |
-
|
274 |
-
|
275 |
-
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
|
276 |
-
if should_check_token_count:
|
277 |
-
yield chatbot+[(inputs, "")], history, "开始生成回答……", all_token_counts
|
278 |
-
if reply_language == "跟随问题语言(不稳定)":
|
279 |
-
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
|
280 |
-
old_inputs = None
|
281 |
-
display_reference = []
|
282 |
-
limited_context = False
|
283 |
-
if files:
|
284 |
-
limited_context = True
|
285 |
-
old_inputs = inputs
|
286 |
-
msg = "加载索引中……(这可能需要几分钟)"
|
287 |
-
logging.info(msg)
|
288 |
-
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
289 |
-
index = construct_index(openai_api_key, file_src=files)
|
290 |
-
msg = "索引构建完成,获取回答中……"
|
291 |
-
logging.info(msg)
|
292 |
-
yield chatbot+[(inputs, "")], history, msg, all_token_counts
|
293 |
-
with retrieve_proxy():
|
294 |
-
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
|
295 |
-
prompt_helper = PromptHelper(max_input_size = 4096, num_output = 5, max_chunk_overlap = 20, chunk_size_limit=600)
|
296 |
-
from llama_index import ServiceContext
|
297 |
-
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
298 |
-
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore)
|
299 |
-
query_bundle = QueryBundle(inputs)
|
300 |
-
nodes = query_object.retrieve(query_bundle)
|
301 |
-
reference_results = [n.node.text for n in nodes]
|
302 |
-
reference_results = add_source_numbers(reference_results, use_source=False)
|
303 |
-
display_reference = add_details(reference_results)
|
304 |
-
display_reference = "\n\n" + "".join(display_reference)
|
305 |
-
inputs = (
|
306 |
-
replace_today(PROMPT_TEMPLATE)
|
307 |
-
.replace("{query_str}", inputs)
|
308 |
-
.replace("{context_str}", "\n\n".join(reference_results))
|
309 |
-
.replace("{reply_language}", reply_language )
|
310 |
-
)
|
311 |
-
elif use_websearch:
|
312 |
-
limited_context = True
|
313 |
-
search_results = ddg(inputs, max_results=5)
|
314 |
-
old_inputs = inputs
|
315 |
-
reference_results = []
|
316 |
-
for idx, result in enumerate(search_results):
|
317 |
-
logging.info(f"搜索结果{idx + 1}:{result}")
|
318 |
-
domain_name = urllib3.util.parse_url(result["href"]).host
|
319 |
-
reference_results.append([result["body"], result["href"]])
|
320 |
-
display_reference.append(f"{idx+1}. [{domain_name}]({result['href']})\n")
|
321 |
-
reference_results = add_source_numbers(reference_results)
|
322 |
-
display_reference = "\n\n" + "".join(display_reference)
|
323 |
-
inputs = (
|
324 |
-
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
|
325 |
-
.replace("{query}", inputs)
|
326 |
-
.replace("{web_results}", "\n\n".join(reference_results))
|
327 |
-
.replace("{reply_language}", reply_language )
|
328 |
-
)
|
329 |
-
else:
|
330 |
-
display_reference = ""
|
331 |
-
|
332 |
-
if len(openai_api_key) == 0 and not shared.state.multi_api_key:
|
333 |
-
status_text = standard_error_msg + no_apikey_msg
|
334 |
-
logging.info(status_text)
|
335 |
-
chatbot.append((inputs, ""))
|
336 |
-
if len(history) == 0:
|
337 |
-
history.append(construct_user(inputs))
|
338 |
-
history.append("")
|
339 |
-
all_token_counts.append(0)
|
340 |
-
else:
|
341 |
-
history[-2] = construct_user(inputs)
|
342 |
-
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
|
343 |
-
return
|
344 |
-
elif len(inputs.strip()) == 0:
|
345 |
-
status_text = standard_error_msg + no_input_msg
|
346 |
-
logging.info(status_text)
|
347 |
-
yield chatbot+[(inputs, "")], history, status_text, all_token_counts
|
348 |
-
return
|
349 |
-
|
350 |
-
if stream:
|
351 |
-
logging.info("使用流式传输")
|
352 |
-
iter = stream_predict(
|
353 |
-
openai_api_key,
|
354 |
-
system_prompt,
|
355 |
-
history,
|
356 |
-
inputs,
|
357 |
-
chatbot,
|
358 |
-
all_token_counts,
|
359 |
-
top_p,
|
360 |
-
temperature,
|
361 |
-
selected_model,
|
362 |
-
fake_input=old_inputs,
|
363 |
-
display_append=display_reference
|
364 |
-
)
|
365 |
-
for chatbot, history, status_text, all_token_counts in iter:
|
366 |
-
if shared.state.interrupted:
|
367 |
-
shared.state.recover()
|
368 |
-
return
|
369 |
-
yield chatbot, history, status_text, all_token_counts
|
370 |
-
else:
|
371 |
-
logging.info("不使用流式传输")
|
372 |
-
chatbot, history, status_text, all_token_counts = predict_all(
|
373 |
-
openai_api_key,
|
374 |
-
system_prompt,
|
375 |
-
history,
|
376 |
-
inputs,
|
377 |
-
chatbot,
|
378 |
-
all_token_counts,
|
379 |
-
top_p,
|
380 |
-
temperature,
|
381 |
-
selected_model,
|
382 |
-
fake_input=old_inputs,
|
383 |
-
display_append=display_reference
|
384 |
-
)
|
385 |
-
yield chatbot, history, status_text, all_token_counts
|
386 |
-
|
387 |
-
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
|
388 |
-
if len(history) > 1 and history[-1]["content"] != inputs:
|
389 |
-
logging.info(
|
390 |
-
"回答为:"
|
391 |
-
+ colorama.Fore.BLUE
|
392 |
-
+ f"{history[-1]['content']}"
|
393 |
-
+ colorama.Style.RESET_ALL
|
394 |
-
)
|
395 |
-
|
396 |
-
if limited_context:
|
397 |
-
history = history[-4:]
|
398 |
-
all_token_counts = all_token_counts[-2:]
|
399 |
-
yield chatbot, history, status_text, all_token_counts
|
400 |
-
|
401 |
-
if stream:
|
402 |
-
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"]
|
403 |
-
else:
|
404 |
-
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"]
|
405 |
-
|
406 |
-
if sum(all_token_counts) > max_token and should_check_token_count:
|
407 |
-
print(all_token_counts)
|
408 |
-
count = 0
|
409 |
-
while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0:
|
410 |
-
count += 1
|
411 |
-
del all_token_counts[0]
|
412 |
-
del history[:2]
|
413 |
-
logging.info(status_text)
|
414 |
-
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
|
415 |
-
yield chatbot, history, status_text, all_token_counts
|
416 |
-
|
417 |
-
|
418 |
-
def retry(
|
419 |
-
openai_api_key,
|
420 |
-
system_prompt,
|
421 |
-
history,
|
422 |
-
chatbot,
|
423 |
-
token_count,
|
424 |
-
top_p,
|
425 |
-
temperature,
|
426 |
-
stream=False,
|
427 |
-
selected_model=MODELS[0],
|
428 |
-
reply_language="中文",
|
429 |
-
):
|
430 |
-
logging.info("重试中……")
|
431 |
-
if len(history) == 0:
|
432 |
-
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
|
433 |
-
return
|
434 |
-
history.pop()
|
435 |
-
inputs = history.pop()["content"]
|
436 |
-
token_count.pop()
|
437 |
-
iter = predict(
|
438 |
-
openai_api_key,
|
439 |
-
system_prompt,
|
440 |
-
history,
|
441 |
-
inputs,
|
442 |
-
chatbot,
|
443 |
-
token_count,
|
444 |
-
top_p,
|
445 |
-
temperature,
|
446 |
-
stream=stream,
|
447 |
-
selected_model=selected_model,
|
448 |
-
reply_language=reply_language,
|
449 |
-
)
|
450 |
-
logging.info("重试中……")
|
451 |
-
for x in iter:
|
452 |
-
yield x
|
453 |
-
logging.info("重试完毕")
|
454 |
-
|
455 |
-
|
456 |
-
def reduce_token_size(
|
457 |
-
openai_api_key,
|
458 |
-
system_prompt,
|
459 |
-
history,
|
460 |
-
chatbot,
|
461 |
-
token_count,
|
462 |
-
top_p,
|
463 |
-
temperature,
|
464 |
-
max_token_count,
|
465 |
-
selected_model=MODELS[0],
|
466 |
-
reply_language="中文",
|
467 |
-
):
|
468 |
-
logging.info("开始减少token数量……")
|
469 |
-
iter = predict(
|
470 |
-
openai_api_key,
|
471 |
-
system_prompt,
|
472 |
-
history,
|
473 |
-
summarize_prompt,
|
474 |
-
chatbot,
|
475 |
-
token_count,
|
476 |
-
top_p,
|
477 |
-
temperature,
|
478 |
-
selected_model=selected_model,
|
479 |
-
should_check_token_count=False,
|
480 |
-
reply_language=reply_language,
|
481 |
-
)
|
482 |
-
logging.info(f"chatbot: {chatbot}")
|
483 |
-
flag = False
|
484 |
-
for chatbot, history, status_text, previous_token_count in iter:
|
485 |
-
num_chat = find_n(previous_token_count, max_token_count)
|
486 |
-
logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats")
|
487 |
-
if flag:
|
488 |
-
chatbot = chatbot[:-1]
|
489 |
-
flag = True
|
490 |
-
history = history[-2*num_chat:] if num_chat > 0 else []
|
491 |
-
token_count = previous_token_count[-num_chat:] if num_chat > 0 else []
|
492 |
-
msg = f"保留了最近{num_chat}轮对话"
|
493 |
-
yield chatbot, history, msg + "," + construct_token_message(
|
494 |
-
token_count if len(token_count) > 0 else [0],
|
495 |
-
), token_count
|
496 |
-
logging.info(msg)
|
497 |
-
logging.info("减少token数量完毕")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|