Spaces:
Sleeping
Sleeping
File size: 6,152 Bytes
7f6c08d 7352851 e8b9998 7352851 dd1055c 7f6c08d 72ca55a 05fbc95 7f6c08d 7352851 72ca55a ef13d6a 72ca55a dd1055c 7bdb95c 72ca55a 7bdb95c 72ca55a 7bdb95c 72ca55a 7bdb95c 72ca55a 7bdb95c 72ca55a 7bdb95c ef13d6a 72ca55a 7352851 e8b9998 7352851 e1a461b 7352851 e8b9998 7352851 ef13d6a 7352851 72ca55a 7352851 dd1055c 72ca55a 7bdb95c 58f22e2 7352851 ef13d6a dd1055c 7352851 dd1055c 7352851 dd1055c 7352851 05fbc95 dd1055c 72ca55a 7352851 72ca55a dd1055c 7352851 7bdb95c 72ca55a 7bdb95c 7352851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import nest_asyncio
nest_asyncio.apply()
import streamlit as st
from transformers import pipeline
import torch
from gtts import gTTS
import io
import time
from streamlit.components.v1 import html
import asyncio
import base64
if not asyncio.get_event_loop().is_running():
asyncio.set_event_loop(asyncio.new_event_loop())
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = {
'scenario': None,
'story': None,
'audio': None
}
if 'image_data' not in st.session_state:
st.session_state.image_data = None
# JavaScript timer component with stop function
def timer():
return """
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
<script>
var timerInterval;
function updateTimer() {
var start = Date.now();
var timerElement = document.getElementById('timer');
timerInterval = setInterval(function() {
var elapsed = Date.now() - start;
var minutes = Math.floor(elapsed / 60000);
var seconds = Math.floor((elapsed % 60000) / 1000);
timerElement.innerHTML = 'β±οΈ Elapsed: ' +
(minutes < 10 ? '0' : '') + minutes + ':' +
(seconds < 10 ? '0' : '') + seconds;
}, 1000);
}
function stopTimer() {
if (timerInterval) {
clearInterval(timerInterval);
document.getElementById('timer').style.color = '#00cc00';
}
}
updateTimer();
// Handle Streamlit's component cleanup
window.addEventListener('beforeunload', function() {
if (timerInterval) clearInterval(timerInterval);
});
</script>
"""
# Stop timer function
def stop_timer():
html("""
<script>
if (typeof stopTimer === 'function') {
stopTimer();
}
</script>
""", height=0)
# Page setup
st.set_page_config(page_title="Your Image to Audio Story", page_icon="π¦")
st.header("Turn Your Image to a Short Audio Story for Children")
# Model loading
@st.cache_resource
def load_models():
return {
"img_model": pipeline("image-to-text", "cnmoro/tiny-image-captioning"),
"story_model": pipeline("text-generation", "Qwen/Qwen2.5-0.5B-Instruct")
}
models = load_models()
# Processing functions
def img2text(url):
return models["img_model"](url)[0]["generated_text"]
def text2story(text):
prompt = f"Generate a 100-word story about: {text}"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
response = models["story_model"](
messages,
max_new_tokens=100,
do_sample=True,
temperature=0.7
)[0]["generated_text"]
return response[2]["content"]
def text2audio(story_text):
audio_io = io.BytesIO()
tts = gTTS(text=story_text, lang='en', slow=False)
tts.write_to_fp(audio_io)
audio_io.seek(0)
return {'audio': audio_io, 'sampling_rate': 16000}
# UI components
uploaded_file = st.file_uploader("Select an Image After the Models are Loaded...")
if uploaded_file is not None:
# Save the image data to session state
bytes_data = uploaded_file.getvalue()
st.session_state.image_data = bytes_data
# Initialize progress containers
status_text = st.empty()
progress_bar = st.progress(0)
# Start JavaScript timer
html(timer(), height=50)
try:
# Save uploaded file
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
if st.session_state.get('current_file') != uploaded_file.name:
st.session_state.current_file = uploaded_file.name
# Display image
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
# Stage 1: Image to Text
status_text.markdown("**πΌοΈ Generating caption...**")
progress_bar.progress(0)
st.session_state.processed_data['scenario'] = img2text(uploaded_file.name)
progress_bar.progress(33)
# Stage 2: Text to Story
status_text.markdown("**π Generating story...**")
progress_bar.progress(33)
st.session_state.processed_data['story'] = text2story(
st.session_state.processed_data['scenario']
)
progress_bar.progress(66)
# Stage 3: Story to Audio
status_text.markdown("**π Synthesizing audio...**")
progress_bar.progress(66)
st.session_state.processed_data['audio'] = text2audio(
st.session_state.processed_data['story']
)
progress_bar.progress(100)
# Final status and stop timer
status_text.success("**β
Generation complete!**")
stop_timer()
# Show results
st.write("**Caption:**", st.session_state.processed_data['scenario'])
st.write("**Story:**", st.session_state.processed_data['story'])
except Exception as e:
stop_timer()
status_text.error(f"**β Error:** {str(e)}")
progress_bar.empty()
raise e
finally:
pass
elif st.session_state.image_data is not None:
# Display the previously uploaded image from session state
st.image(st.session_state.image_data, caption="Uploaded Image", use_container_width=True)
# Show previous results if available
if st.session_state.processed_data.get('scenario'):
st.write("**Caption:**", st.session_state.processed_data['scenario'])
if st.session_state.processed_data.get('story'):
st.write("**Story:**", st.session_state.processed_data['story'])
# Audio playback
if st.button("Play Audio of the Story Generated"):
if st.session_state.processed_data.get('audio'):
audio_data = st.session_state.processed_data['audio']
st.audio(
audio_data['audio'].getvalue(),
format="audio/mp3"
)
else:
st.warning("Please generate a story first!") |