File size: 6,152 Bytes
7f6c08d
 
 
7352851
e8b9998
7352851
 
 
 
dd1055c
7f6c08d
72ca55a
05fbc95
7f6c08d
 
 
7352851
 
 
 
 
 
 
 
72ca55a
 
ef13d6a
72ca55a
dd1055c
 
7bdb95c
 
72ca55a
 
7bdb95c
 
 
 
72ca55a
7bdb95c
 
 
 
 
 
 
72ca55a
 
 
 
 
 
7bdb95c
 
72ca55a
 
7bdb95c
 
 
72ca55a
7bdb95c
 
ef13d6a
 
72ca55a
 
 
 
 
 
 
 
 
7352851
 
 
 
 
 
 
 
 
 
e8b9998
7352851
 
 
 
 
 
 
 
 
e1a461b
7352851
 
 
 
 
 
e8b9998
7352851
 
 
 
 
 
 
 
 
 
 
 
 
 
ef13d6a
7352851
72ca55a
 
 
 
7352851
 
 
dd1055c
72ca55a
7bdb95c
58f22e2
7352851
 
 
 
 
 
 
 
 
 
 
 
ef13d6a
dd1055c
7352851
 
 
 
dd1055c
 
7352851
 
 
 
 
 
dd1055c
 
7352851
 
 
 
 
05fbc95
dd1055c
72ca55a
7352851
 
 
 
 
 
72ca55a
dd1055c
7352851
 
7bdb95c
 
72ca55a
 
 
 
 
 
 
 
 
 
 
7bdb95c
 
7352851
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import nest_asyncio
nest_asyncio.apply()

import streamlit as st
from transformers import pipeline
import torch
from gtts import gTTS
import io
import time
from streamlit.components.v1 import html
import asyncio
import base64

if not asyncio.get_event_loop().is_running():
    asyncio.set_event_loop(asyncio.new_event_loop())
    
# Initialize session state
if 'processed_data' not in st.session_state:
    st.session_state.processed_data = {
        'scenario': None,
        'story': None,
        'audio': None
    }

if 'image_data' not in st.session_state:
    st.session_state.image_data = None

# JavaScript timer component with stop function
def timer():
    return """
    <div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">⏱️ Elapsed: 00:00</div>
    <script>
    var timerInterval;
    
    function updateTimer() {
        var start = Date.now();
        var timerElement = document.getElementById('timer');
        
        timerInterval = setInterval(function() {
            var elapsed = Date.now() - start;
            var minutes = Math.floor(elapsed / 60000);
            var seconds = Math.floor((elapsed % 60000) / 1000);
            timerElement.innerHTML = '⏱️ Elapsed: ' + 
                (minutes < 10 ? '0' : '') + minutes + ':' + 
                (seconds < 10 ? '0' : '') + seconds;
        }, 1000);
    }
    
    function stopTimer() {
        if (timerInterval) {
            clearInterval(timerInterval);
            document.getElementById('timer').style.color = '#00cc00';
        }
    }
    
    updateTimer();
    
    // Handle Streamlit's component cleanup
    window.addEventListener('beforeunload', function() {
        if (timerInterval) clearInterval(timerInterval);
    });
    </script>
    """

# Stop timer function
def stop_timer():
    html("""
    <script>
    if (typeof stopTimer === 'function') {
        stopTimer();
    }
    </script>
    """, height=0)

# Page setup
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
st.header("Turn Your Image to a Short Audio Story for Children")

# Model loading
@st.cache_resource
def load_models():
    return {
        "img_model": pipeline("image-to-text", "cnmoro/tiny-image-captioning"),
        "story_model": pipeline("text-generation", "Qwen/Qwen2.5-0.5B-Instruct")
    }

models = load_models()

# Processing functions
def img2text(url):
    return models["img_model"](url)[0]["generated_text"]

def text2story(text):
    prompt = f"Generate a 100-word story about: {text}"
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    response = models["story_model"](
        messages,
        max_new_tokens=100,
        do_sample=True,
        temperature=0.7
    )[0]["generated_text"]
    return response[2]["content"]

def text2audio(story_text):
    audio_io = io.BytesIO()
    tts = gTTS(text=story_text, lang='en', slow=False)
    tts.write_to_fp(audio_io)
    audio_io.seek(0)
    return {'audio': audio_io, 'sampling_rate': 16000}

# UI components
uploaded_file = st.file_uploader("Select an Image After the Models are Loaded...")
 
if uploaded_file is not None:
    # Save the image data to session state
    bytes_data = uploaded_file.getvalue()
    st.session_state.image_data = bytes_data
    
    # Initialize progress containers
    status_text = st.empty()
    progress_bar = st.progress(0)
    
    # Start JavaScript timer
    html(timer(), height=50)
    
    try:
        # Save uploaded file
        with open(uploaded_file.name, "wb") as file:
            file.write(bytes_data)

        if st.session_state.get('current_file') != uploaded_file.name:
            st.session_state.current_file = uploaded_file.name

            # Display image
            st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)

            # Stage 1: Image to Text
            status_text.markdown("**πŸ–ΌοΈ Generating caption...**")
            progress_bar.progress(0)
            st.session_state.processed_data['scenario'] = img2text(uploaded_file.name)
            progress_bar.progress(33)

            # Stage 2: Text to Story
            status_text.markdown("**πŸ“– Generating story...**")
            progress_bar.progress(33)
            st.session_state.processed_data['story'] = text2story(
                st.session_state.processed_data['scenario']
            )
            progress_bar.progress(66)

            # Stage 3: Story to Audio
            status_text.markdown("**πŸ”Š Synthesizing audio...**")
            progress_bar.progress(66)
            st.session_state.processed_data['audio'] = text2audio(
                st.session_state.processed_data['story']
            )
            progress_bar.progress(100)

            # Final status and stop timer
            status_text.success("**βœ… Generation complete!**")
            stop_timer()

        # Show results
        st.write("**Caption:**", st.session_state.processed_data['scenario'])
        st.write("**Story:**", st.session_state.processed_data['story'])

    except Exception as e:
        stop_timer()
        status_text.error(f"**❌ Error:** {str(e)}")
        progress_bar.empty()
        raise e
    
    finally:
        pass

elif st.session_state.image_data is not None:
    # Display the previously uploaded image from session state
    st.image(st.session_state.image_data, caption="Uploaded Image", use_container_width=True)
    
    # Show previous results if available
    if st.session_state.processed_data.get('scenario'):
        st.write("**Caption:**", st.session_state.processed_data['scenario'])
    if st.session_state.processed_data.get('story'):
        st.write("**Story:**", st.session_state.processed_data['story'])


# Audio playback
if st.button("Play Audio of the Story Generated"):
    if st.session_state.processed_data.get('audio'):
        audio_data = st.session_state.processed_data['audio']
        st.audio(
            audio_data['audio'].getvalue(),
            format="audio/mp3"
        )
    else:
        st.warning("Please generate a story first!")