Spaces:
Sleeping
Sleeping
Fran
commited on
Commit
·
6f40147
1
Parent(s):
ae7a494
New tool to create linkedin posts
Browse files- .gitignore +2 -0
- app.py +7 -31
- tools/linkedin_post_composer.py +56 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
venv
|
app.py
CHANGED
@@ -1,40 +1,16 @@
|
|
1 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
2 |
-
import datetime
|
3 |
-
import requests
|
4 |
-
import pytz
|
5 |
import yaml
|
6 |
from tools.final_answer import FinalAnswerTool
|
|
|
|
|
7 |
|
8 |
from Gradio_UI import GradioUI
|
9 |
|
10 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
11 |
-
@tool
|
12 |
-
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
|
13 |
-
#Keep this format for the description / args / args description but feel free to modify the tool
|
14 |
-
"""A tool that does nothing yet
|
15 |
-
Args:
|
16 |
-
arg1: the first argument
|
17 |
-
arg2: the second argument
|
18 |
-
"""
|
19 |
-
return "What magic will you build ?"
|
20 |
-
|
21 |
-
@tool
|
22 |
-
def get_current_time_in_timezone(timezone: str) -> str:
|
23 |
-
"""A tool that fetches the current local time in a specified timezone.
|
24 |
-
Args:
|
25 |
-
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
26 |
-
"""
|
27 |
-
try:
|
28 |
-
# Create timezone object
|
29 |
-
tz = pytz.timezone(timezone)
|
30 |
-
# Get current time in that timezone
|
31 |
-
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
32 |
-
return f"The current local time in {timezone} is: {local_time}"
|
33 |
-
except Exception as e:
|
34 |
-
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
35 |
-
|
36 |
|
37 |
final_answer = FinalAnswerTool()
|
|
|
|
|
|
|
38 |
|
39 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
40 |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
@@ -42,7 +18,7 @@ final_answer = FinalAnswerTool()
|
|
42 |
model = HfApiModel(
|
43 |
max_tokens=2096,
|
44 |
temperature=0.5,
|
45 |
-
model_id='
|
46 |
custom_role_conversions=None,
|
47 |
)
|
48 |
|
@@ -55,7 +31,7 @@ with open("prompts.yaml", 'r') as stream:
|
|
55 |
|
56 |
agent = CodeAgent(
|
57 |
model=model,
|
58 |
-
tools=[final_answer], ## add your tools here (don't remove final answer)
|
59 |
max_steps=6,
|
60 |
verbosity_level=1,
|
61 |
grammar=None,
|
|
|
1 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
|
|
|
|
|
|
2 |
import yaml
|
3 |
from tools.final_answer import FinalAnswerTool
|
4 |
+
from tools.visit_webpage import VisitWebpageTool
|
5 |
+
from tools.linkedin_post_composer import LinkedInPostPromptComposerTool
|
6 |
|
7 |
from Gradio_UI import GradioUI
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
final_answer = FinalAnswerTool()
|
11 |
+
visit_web_page = VisitWebpageTool()
|
12 |
+
linkedin_post_composer = LinkedInPostPromptComposerTool()
|
13 |
+
search = DuckDuckGoSearchTool()
|
14 |
|
15 |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
16 |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
|
|
18 |
model = HfApiModel(
|
19 |
max_tokens=2096,
|
20 |
temperature=0.5,
|
21 |
+
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',# it is possible that this model may be overloaded
|
22 |
custom_role_conversions=None,
|
23 |
)
|
24 |
|
|
|
31 |
|
32 |
agent = CodeAgent(
|
33 |
model=model,
|
34 |
+
tools=[linkedin_post_composer, visit_web_page, search, image_generation_tool, final_answer], ## add your tools here (don't remove final answer)
|
35 |
max_steps=6,
|
36 |
verbosity_level=1,
|
37 |
grammar=None,
|
tools/linkedin_post_composer.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents.tools import Tool
|
2 |
+
|
3 |
+
class LinkedInPostPromptComposerTool(Tool):
|
4 |
+
name = "linkedin_post_prompt_composer"
|
5 |
+
description = (
|
6 |
+
"Generates a detailed prompt by synthesizing conversation context, extracted webpage insights, "
|
7 |
+
"and additional instructions. This prompt can then be used by a separate final answer tool to produce "
|
8 |
+
"a polished LinkedIn post."
|
9 |
+
)
|
10 |
+
inputs = {
|
11 |
+
"context": {
|
12 |
+
"type": "string",
|
13 |
+
"description": (
|
14 |
+
"A summary of your brainstorming or discussion context. Include key ideas, opinions, "
|
15 |
+
"and relevant back-and-forth that should influence the final post."
|
16 |
+
)
|
17 |
+
},
|
18 |
+
"extracted_info": {
|
19 |
+
"type": "string",
|
20 |
+
"description": (
|
21 |
+
"Key points, data, or insights extracted from webpages, reports, or articles that provide "
|
22 |
+
"the factual basis for the post."
|
23 |
+
)
|
24 |
+
},
|
25 |
+
"instructions": {
|
26 |
+
"type": "string",
|
27 |
+
"description": (
|
28 |
+
"Additional guidance such as desired tone, target audience, style, or specific calls-to-action. "
|
29 |
+
"For example: 'Make it conversational yet authoritative, include a compelling hook, and end with a question.'"
|
30 |
+
),
|
31 |
+
"nullable": True
|
32 |
+
}
|
33 |
+
}
|
34 |
+
output_type = "string"
|
35 |
+
|
36 |
+
def forward(self, context: str, extracted_info: str, instructions: str = "") -> str:
|
37 |
+
prompt = (
|
38 |
+
"You are an experienced LinkedIn content strategist and influencer. Using the inputs provided, "
|
39 |
+
"generate a comprehensive prompt for an LLM to produce a final LinkedIn post that meets the following criteria:\n\n"
|
40 |
+
"1. **Compelling Hook:** Begin with a strong headline or opening line that grabs attention.\n"
|
41 |
+
"2. **Coherent Narrative:** Seamlessly blend the discussion context and the extracted information into a clear, engaging story.\n"
|
42 |
+
"3. **Actionable Insights:** Offer actionable advice or takeaways that provide real value to a professional audience.\n"
|
43 |
+
"4. **Call-to-Action:** Include a call-to-action to encourage comments, shares, or further engagement.\n"
|
44 |
+
"5. **Trending Hashtags:** Append 3-5 relevant and trending LinkedIn hashtags at the end.\n\n"
|
45 |
+
"The final post should be approximately 200–300 words, using a professional yet conversational tone.\n\n"
|
46 |
+
"### Input Sections:\n"
|
47 |
+
"**Discussion Context:**\n" + context + "\n\n"
|
48 |
+
"**Extracted Information:**\n" + extracted_info + "\n\n"
|
49 |
+
)
|
50 |
+
if instructions:
|
51 |
+
prompt += "**Additional Instructions:**\n" + instructions + "\n\n"
|
52 |
+
prompt += "Now, produce the final answer generating the LinkedIn post based on the above inputs."
|
53 |
+
return prompt
|
54 |
+
|
55 |
+
def __init__(self, *args, **kwargs):
|
56 |
+
self.is_initialized = False
|