Spaces:
Runtime error
Runtime error
from pydoc import describe | |
import re | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import gradio as gr | |
from model import TransformerNet | |
style_model = TransformerNet() | |
device=torch.device("cpu") | |
styles_map = {"Kandinsky, Several circles": "kand_circles.model", | |
"Haring, Dance": "haring_dance.model", | |
"Picasso, The weeping woman": "picasso_weeping.model", | |
"Van Gogh, Wheatfield with crows": "vangogh_crows.model"} | |
content_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Lambda(lambda x: x.mul(255)) | |
]) | |
def run(content_image, style): | |
content_image.thumbnail((1080, 1080)) | |
img = content_transform(content_image) | |
img = img.unsqueeze(0).to(device) | |
model = styles_map[style] | |
state_dict = torch.load(f"./models/{model}") | |
for k in list(state_dict.keys()): | |
if re.search(r'in\d+\.running_(mean|var)$', k): | |
del state_dict[k] | |
style_model.load_state_dict(state_dict) | |
style_model.to(device) | |
with torch.no_grad(): | |
output = style_model(img) | |
img = output[0].clone().clamp(0, 255).numpy() | |
img = img.transpose(1, 2, 0).astype("uint8") | |
img = Image.fromarray(img) | |
return img | |
content_image_input = gr.inputs.Image(label="Content Image", type="pil") | |
style_input = gr.inputs.Dropdown(list(styles_map.keys()), type="value", default="Kandinsky, Several circles", label="Style") | |
description="Fast Neural Style Transfer demo (trained from scratch!). Upload a content image. Select an artwork. Enjoy." | |
article=""" | |
**References**\n\n | |
You can find <a href='https://francescopochetti.com/fast-neural-style-transfer-deploying-pytorch-models-to-aws-lambda/' target='_blank'>here</a> a post I put together | |
describing the approach I used to train models and deploy them on <a href='http://visualneurons.com/fast.html' target='_blank'>visualneurons.com</a> using AWS Lambda. \n | |
<a href='https://github.com/FraPochetti/examples/blob/master/fast_neural_style/neural_style/FastStyleTransferPytorch.ipynb' target='_blank'>Here</a> is instead the Jupyter notebook | |
with the training logic. \n | |
<br> | |
<hr> | |
**Kandinsky, Several circles** | |
<img src='https://style-transfer-webapptest.s3.eu-west-1.amazonaws.com/small_images_hf/Several_Circles.jpeg'> | |
<hr> | |
**Haring, Dance** | |
<img src='https://style-transfer-webapptest.s3.eu-west-1.amazonaws.com/small_images_hf/Haring.jpeg'> | |
<hr> | |
**Picasso, The weeping woman** | |
<img src='https://style-transfer-webapptest.s3.eu-west-1.amazonaws.com/small_images_hf/weeping.png'> | |
<hr> | |
**Van Gogh, Wheatfield with crows** | |
<img src='https://style-transfer-webapptest.s3.eu-west-1.amazonaws.com/small_images_hf/Wheatfield_with_crows.jpeg'> | |
""" | |
example = ["dog.jpeg", "Kandinsky, Several circles"] | |
app_interface = gr.Interface(fn=run, | |
inputs=[content_image_input, style_input], | |
outputs="image", | |
title="Fast Neural Style Transfer", | |
description=description, | |
examples=[example], | |
article=article) | |
app_interface.launch() |