File size: 4,109 Bytes
3c1f124
d9a3dc8
 
 
 
 
 
 
 
 
 
 
 
3c1f124
 
d9a3dc8
3c1f124
 
d9a3dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

# `gradio_folium`
<a href="https://pypi.org/project/gradio_folium/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_folium"></a>  

Display Interactive Maps Created with Folium

## Installation
    
```bash 
pip install gradio_folium
```

## Usage

```python

import gradio as gr
from gradio_folium import Folium
from folium import Map
import pandas as pd
import pathlib

df = pd.read_csv(pathlib.Path(__file__).parent / "cities.csv")

def select(df, data: gr.SelectData):
    row = df.iloc[data.index[0], :]
    return Map(location=[row['Latitude'], row['Longitude']])

with gr.Blocks() as demo:
    gr.Markdown(("# 🗺️ Explore World Capitals with Gradio and Folium\n"
                 "Install this custom component with `pip install gradio_folium`"))
    map = Folium(value=Map(location=[25.7617, -80.1918]), height=400)
    data = gr.DataFrame(value=df, height=200)
    data.select(select, data, map)

if __name__ == "__main__":
    demo.launch()

```

## `Folium`

### Initialization

<table>
<thead>
<tr>
<th align="left">name</th>
<th align="left" style="width: 25%;">type</th>
<th align="left">default</th>
<th align="left">description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"><code>value</code></td>
<td align="left" style="width: 25%;">

```python
Any
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>height</code></td>
<td align="left" style="width: 25%;">

```python
int | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>label</code></td>
<td align="left" style="width: 25%;">

```python
str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>container</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>scale</code></td>
<td align="left" style="width: 25%;">

```python
int | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>min_width</code></td>
<td align="left" style="width: 25%;">

```python
int | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>visible</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>elem_id</code></td>
<td align="left" style="width: 25%;">

```python
str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>elem_classes</code></td>
<td align="left" style="width: 25%;">

```python
list[str] | str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>render</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>load_fn</code></td>
<td align="left" style="width: 25%;">

```python
Callable[Ellipsis, Any] | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>every</code></td>
<td align="left" style="width: 25%;">

```python
float | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
</tbody></table>




### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function. 
- When used as an output, the component only impacts the return signature of the user function. 

The code snippet below is accurate in cases where the component is used as both an input and an output.



 ```python
 def predict(
     value: Unknown
 ) -> folium.folium.Map:
     return value
 ```